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We develop high temperature expansions for the conformal charge, ¢, of the square lattice

Ising and 3-state Potts models using Cardy’s expression for ¢ in terms of the second moment of the

energy-energy correlation function. Using Padé and integral approximant methods to analyze the
series, we estimate its value to be 0.500 £ 0.001 and 0.80 &£ 0.01 for the Ising and 3-state Potts

models respectively. In addition, we show that the conformal charge can be bounded in terms of

another universal amplitude ratio.
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One of the most remarkable developments in sta-
tistical mechanics in recent years has been the exploita-
tion of conformal symmetries in 2-dimensional critical
theories.! Much of the early work was focussed on the
conformal invariance of the correlations at the critical
point itself. Recent work by Zamolodchikov? and Cardy®
has succeeded in extending many of the relevant ideas to
correlations away from the critical point. These results
have opened up the possibility of calculating the quan-
tities of interest by perturbative methods. In conformal
theories, the central quantity, which characterizes differ-
ent universality classes, is the conformal charge or the
conformal anomaly c¢. Zamolodchikov has derived a C-
theorem which is analogous to Boltzmann’s H-theorem.
He defines a function C' which is non-increasing along
the renormalization group trajectories and reduces to the
conformal charge at the critical points. Using this C-
function, Cardy has shown that the conformal charge is
expressible as a hyper-universal amplitude ratio.

We begin by considering the moments of the energy-
energy correlation function

prn = 0 S () — e, (1)

where the sum runs over all bonds of the lattice, e; rep-
resents the interaction energy between the spins across
the bond 4, r;; is the distance between the midpoints of
the bonds ¢ and 7 in units of the lattice spacing and N
is the total number of sites in the problem. The specific
heat is proportional to pgo. The central charge at the
critical point can be expressed as®

127(K, — K)?

c=_lim wﬂﬂz (2)

K—K,.

Here, o is the specific heat critical exponent, K is the
reduced coupling constant and K, is its value at the crit-
ical point. For a > 0, this definition leads to a rather

appealing physical interpretation for the central charge.
It is, apart from a constant factor, the singular part of
the free energy per correlation volume,

(1—a)
(2—a)

c= lim —127
K—K,.

It (3)

Here f; is the singular part of the free energy in units
of kT, and &g is the correlation length defined via the
second moment of the energy-energy correlation function,

& =np2/1Eo- (4)

By virtue of hyperscaling, the expression in Eq. (3) goes
to a universal constant as one approaches the critical
point. From a calculational point of view Eq. (2) is
the most convenient. Cardy also showed?® that it leads
to ¢ = 1/2 for the Ising model in agreement with known
results.

In this paper we develop high temperature expan-
sions for the second moment of the energy-energy corre-
lation function for the Ising and 3-state Potts models. By
use of Eq. (2), this expansion leads directly to an expan-
sion for the conformal charge. We find that the series is
a rapidly converging one for the Ising model, but that is
not so for the Potts case. However, in both cases we can
use series extrapolation methods to estimate their value.
Using integral approximants* we obtain ¢ = 0.50040.001
and 0.80 &£ 0.01 for the two cases, respectively. This is
in excellent agreement with the known exact answers of
1/2 and 4/5. To our knowledge this represents the first
constructive method for calculating the conformal charge
from the Hamiltonian. Previously this quantity has been
calculated by studying the size dependence of the free en-
ergy at the critical point,® or by identifying it by search-
ing through the tables of Friedan et al.®

The partition function for the g-state Potts model
on the square lattice is”

Z =Tr,, H eK‘;sf"j, (5)
(i,5)



where the s; take ¢ different values, ¢ is a Kronecker
delta function and the product runs over every pair of
nearest neighbor bonds on the square lattice. The Ising
case corresponds to ¢ = 2. The natural high temperature
expansion variable is

v= (" -1)/(e" —1+q). (6)
We now briefly discuss the series generation method. Fol-
lowing standard terminology® from cluster expansions
e can be expressed as a sum over distinct graphs of

the lattice, of the weight of the graph times the lattice
constant of the graph.

pes =y W(g) x L(g). (7)

Here all graphs which are not related by a lattice sym-
metry (which for the square lattice includes translation,
rotation by /2 and reflections about z and y axes) must
be treated separately. The weight of a graph can be de-
fined recursively as

W(g) = ppa(a) = Y W(s), (8)
sCg

where pg2(g) is obtained by restricting the sums in Eq.
(1) and the product in (5) to the bonds contained in
the graph g. It is straightforward to show that (a) the
weight of a graph with N, bonds is of order v¥*~2, and
(b) weights of disconnected and articulated graphs are
identically zero. Thus, to develop the expansions cor-
rectly to order M, one needs to consider all star graphs
with M + 2 or fewer bonds and calculate pg 2 for these
graphs. Let the expansion be expressed as

HE2 = Z amv™. (9)
m=2
The coefficients a,, are given in Table 1.

TABLE I. Expansion coefficients
in powers of v for pug 2 of the g-state
Potts models.

order q=2 q=3
2 2 16/9
3 32/9
4 20 16
5 0 544/9
6 162 1312/9
7 0 5056/9
8 1200 15488/9
9 0 4448
10 8462 147824/9
11 0 384064/9
12 57804 1172696 /9
13 0 3651824 /9
14 386102

In d = 2, the critical point for the g-state Potts
models is given by

e 1=/, (10)

| ve = V)@ + V). (1)

By use of this result, and by making appropriate changes
of variables, Eq. (2) becomes

o= Gollim uea(l—v/ul (12)

Note is made that the other K to v conversion factors
cancel to unity. For the Ising case the ferromagnet and
the antiferromagnet are related by a symmetry, thus the
series involves only even powers of v. It is then more
convenient to consider the expression,

0= oallim el =/l (13

Setting @ = 0, as is appropriate for the 2d Ising
model, this leads to the expansion (z = v/v,.)

c/A=1-0.2842712% — 0.047040z* — 0.0227262°
—0.009963z% — 0.0053252'° — 0.0032192% — ...,

with

A =0.808518....

At x = 1 this series is rapidly converging. The succesive
partial sums lead to estimates for c of 0.579, 0.541, 0.522,
0.514, 0.509, and 0.507 respectively, which is clearly con-
verging to the correct answer of 1/2. In fact, using inte-
gral approximants to estimate the value of the series at
z = 1 we obtain ¢ = 0.5 with an uncertainty of 0.001.

From Eq. (12), setting o = 1/3 as is appropriate for
the 3-state Potts model, we obtain the expansion

c/A=1-1.267949z + 0.741670z* — 0.0121962°
— 0.656986z* + 0.799704z° — 0.3525342°
— 0.3772462" + 0.899853z% — 0.9202352°
+0.4788532'° +0.109393z + ...,

with
A =3.2324629. ...

This series is not as rapidly converging as the Ising case.
However, if we use integral approximants to estimate its
value at z = 1, we obtain ¢ = 0.79 £ 0.02. We have
analyzed the series by several other methods. We can
directly estimate the coefficient of (1 — v/v.)72 in pg 2.
This leads to an estimate for ¢ of 0.80 £ 0.01. To get a



more unbiassed estimate, that does not require building
in the value of v, into the series, we consider the expan-
sion for ¢* defined by

. _ Bmp N ’
<K =G ap (ﬂ) :

0K

Kh_r)r}l{cc (K)=c. (14)

Summing up this series using ordinary Padé approxi-
mants, we obtain ¢ = 0.80£0.01. Clearly, different meth-
ods of analyzing the series agree quite well.

It is interesting to consider the hyper-universal am-
plitude ratio for arbitrary dimension d, namely the sin-
gular part of the free energy per correlation volume, that
is to say, £¢ replaces ¢% in Eq. (3), and for general lat-
tice structures we include a factor of V/a¢ where V is the
volume per lattice site and a is the lattice spacing. For
d > 4 hyperscaling fails, and the conformal charge esti-
mator diverges to infinity. For the one dimensional Ising
model, it is zero as f; = 0. It would be interesting to
compute this quantity for the 3-dimensional Ising model.
This effort is left for the future.

In the meantime we can give an upper bound for
the central charge ¢ in terms of currently, more widely
available quantities than the energy-energy correlation
length. We will now demonstate that the spin-spin cor-
relation length (plus unity) is greater than or equal to the
energy-energy correlation length. Thus the replacement
of ég in Eq. (2) by ¢ in ¢*(K) will result in an upper
bound. We will present this demonstration in the con-
text of the Simon-Griffiths class of spin variables?, where
the results of Aizenman!? that we use are known (with
some additional discussion in spots) to be valid. Let us
take a; ; = 1 if 4 and j are nearest neighbors, and zero
otherwise. Then if we write out explicitly,

ikt = 3(Fi+ 7 — 7 — 71)7, (15)

the energy-energy correlation length (second moment

definition) is

Ej,k,z aosjak\lrg,j,k,l(<¢0¢j¢k¢l> — (Bod;){Prer))
Ej,k,l ook ((Podjdrdi) — (bodj){Prdr))

¢p =

(16)
and the second moment definition of the spin-spin corre-
lation length is,

9 En Tg,n <¢0¢n>
Zn <¢0 ¢n> ’

where Tg,n = (7o — Fn)z. Note that this definition is a
factor of 2d larger that the usual one in order to conform
to the work of Cardy,® where d is the spatial dimension.
Now we observe that if, in line with the index values
allowed by the a’s when we do the sums in (16), we write

£ (17)

75 =T +5;~ and 7] =7}, +5'l where the 8’s are unit vectors,
then from (15) we may write,

Tzz,j,k,l = T(z),k + (7o — %) - (gj - 5’1) + 41(5} - ‘-5’1)2 (18)

When we remember that we will sum in a symmetrical
manner over k we may drop the dot product in (18) as the
the +k and —k corresponding terms will cancel in pairs.
The magnitude of the remaining term in (18) involving
the §'s is always less than or equal to unity. Thus ri ikl S
r;‘;’ » + 1 and so by Giffiths’ second inequality'! we get an
upper bound on ¢%, by replacing r?,j,k,l by ’r‘ch and adding
unity.

The next ingredient that we need is the result of
Aizenman!® (Prop. 5.1),

(Podiprdt) — (Pod;){drdr)) =
<¢0¢k><¢]¢l>(1 - PI‘Ob.(O, kvjvl))
+ (Pogi)(#;dr) (1 — Prob.(0,1, 5,k)), (19)

where Prob. is a probabilty depending on its arguments
as explained by Aizenman. Now because of the symmetry
of the sums, we get the same contribution to £g from
each of the two terms on the right-hand side of (19), so
we need only take one of them. Thus we have,

<1+ (20)

> k1 @0,5kry p[(Dodr)(Bi¢i) (1 — Prob.(0,k, 5,1))]
201 @05 1[(Podr)(dj¢i) (1 — Prob.(0, k, 7,1))]

If we subtract (20) from (17), we will get,

(& +1- E%){ > aojanl(dodr) (bid)

3kl

IR E

n

E ag,jop 1 {(Podr)(Pibi)(PoPn)

Ik, n
x (1 — Prob.(0, k,j,l'))(rg’n — 7"(2),k)- (21)

Now for clarity of exposition, let us define,
X(0,k) =Y g joi{bi¢r)(1— Prob.(0,k,5,1)). (22)
7,1

The right-hand side of (21), becomes
DX, k) pode) D [rd l(dodn)
k n
— Y IX(0, k)5 1l bodr) Y [1{odn), (23)
k

n

which we recognize as being proportional to the negative
of the correlation coefficient of ra r and X (0,k), against
(podr) as a measure by Griffiths’ first inequality.!' As
rd, — 0o when k — oo, as X (0, k) is driven to zero by
the (pjdr) terms for K < K., and 0 < Prob. < 1 always,



the correlation coefficient is negative, and so we conclude
that
£ +1>¢5, (24)

which concludes our demonstration that the replacement
of €% by €2+ 11n (1) gives an upper bound for the central
charge c.

If for the three-dimensional Ising model (simple cu-
bic lattice) we substitute known values'? in this bound
for the hyper-universal amplitude ratio, which is the cen-
tral charge estimator in two dimensions, then we compute
that ¢ < 27.4 + 0.3. In this example, the addition of the
Baker-Bessis!® bound on the decay of spin-spin correla-
tion function allows us to lower the upper bound by a
factor of 2¢ which reduces the upper bound to 3.42, and
leaves open the possibility that the true value may be in
an interesting range.
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