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Abstract The Markov property method of speeding up standard Monte
Carlo methods can yield about an order of magnitude improvement for
the two-dimensional Ising model. We also study the effects of finite size
in the three-dimensional Ising model on the computation of the renor-
malized coupling constant and find, so long as the correlation length
is less that about one-tenth the system width, that an accuracy of one
percent or better can be expected.

1. Introduction

A critical-phenomena problem which remains unresolved is the proper analysis
of the behavior of the renormalized coupling constant in the three-dimensional
Ising model, and the attendant problems of the anomalous dimension of the
vacuum, hyperscaling and universality. In this paper we report two studies
which are intended to form a basis for an adequate numerical approach to the
resolution of this problem. The first is the investigation of a Markov property
method intended to speed up Monte Carlo simulations. It was introduced and
tried on the one-dimensional Ising model by Baker [1]. Here we examine its
effectiveness on the two-dimensional Ising model. We find that it can provide
about an order of magnitude speedup in this case. Secondly we investigate in
the three-dimensional Ising model the approach of the finite-system, renormal-
ized coupling-constant, g,(K; L), to the infinite-system limit. We calculate val-
ues of g,.(K; L) and the correlation length £ (K) for systems of width L < 100
by either Monte Carlo or exact summation. We find (K/K.)%/?¢,(K;L) as
a function of 1 (K)/L to be approximately independent of L and that, for
¢(K) < L/10, g.(K; L) should agree with g,.(K;o00) to within at least one-
percent.

2. Auto-Correlation Times in Two Dimensions.

In some previous work the idea was introduced [1] of using the Markov property
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to speed up the Monte Carlo evaluation of thermodynamic functions in one di-
mension and to do [2] exact calculations on two-dimensional, finite-sized Ising
model systems. In this section we extend the Markov-property, Monte-Carlo
investigation to two dimensions. To remind the reader briefly, the Markov prop-
erty means that for an Ising spin system, if we fix all the spins on the boundary
of a finite region, then the expectation value of any function supported entirely
in that region is completely independent of the spins outside that region. Baker
[2] proposed the idea of dividing the plane-square lattice into diamond shaped
regions, tabulating the sums of the appropriate quantities over all the interior
spins of the diamonds as functions of the boundary-spin values, and then doing
a Monte Carlo evaluation over the remaining boundary spins. Very significant
speedups were obtained in one dimension [1].

In this study, we have considered four cases. The first case is meant to
serve as a baseline and is the standard red-black decomposition of the lattice
together with the standard Metropolis algorithm [3]. Since the purpose of this
study is to consider the possible improvements due to block-internal spin sum-
mation, we use the straightforward Metropolis algorithm rather than a more
sophisticated algorithm such as the Swendsen-Wang algorithm [4]. We used
the Connection Machines routine “fast_rng” for the generation of the pseudo-
random numbers. It is a lagged Fibonacci algorithm and we always used a 4
digit prime number as the initial seed. In this paper we use the term “auto-
correlation time” to mean the number of “lattice updates” required so that the
magnetization auto-correlation is equal to e~! where e is the base of the natural
logarithms. We denote this auto-correlation time by 7. By the term “lattice
update” we mean that we apply the Metropolis algorithm once to each lattice
spin to see if it should be flipped. In order to compute the auto-correlation
time, we proceed as follows. Starting with a spin configuration, we perform a
sufficient number, m, of lattice updates so that we estimate that the correlation
between the magnetization at the original configuration and that in the new
configuration to be about one-half. Typically our studies of the auto-correlation
time were done with one sample taken every m lattice updates. Then 32 such
sampled configurations were used in each of 40 coarse grain samples. These
calculations were done on the CM-200. Some additional computations with
512 such sampled configurations for each of the 40 coarse grained samples were
made on the CM-5. If the initial estimate and the observed auto-correlation
times were too different, new estimates were used and the process continued
until the estimate and the observations were fairly close. We have then com-
puted the auto-correlation time by fitting a single exponential to the observed
auto-correlation at a point where this auto-correlation is about one-half. This
procedure yields estimates of the auto-correlation time which have statistical
errors of about 2 - 3 percent which seems to be comparable to the accuracy
claimed [5] for the same amount of computation for the sum of the observed
auto-correlations over a window of time whose width is proportional to the
auto-correlation time.

The second case studied was for the division of the spins of the plane-square
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lattice into diamonds with 2 spins on each edge. They have 4 boundary spins
and one interior spin. As explained above, this process is equivalent to picking
a Monte Carlo configuration of the boundary spins and then summing the
internal spins in each block to obtain the statistical weight of the boundary
spin configuration. A comparison of the flipped and non-flipped configuration
weights by means of the standard, Metropolis, asymmetric algorithm allows us
to decide whether to accept or reject the spin-flipped configuration.

The third case divides up the plane into diamonds with 3 spins on each
edge so that there are 8 boundary spins and 5 interior spins. The fourth case
divides the plane up into diamonds with 5 spins on each edge so that there
are 16 boundary spins and 25 internal spins in each diamond. The case of 4
spins on the edge was skipped because this division of the plane has a repeat
distance of 6 which is not a power of two.

We have performed these calculations for a grid of about 8 inverse temper-
atures ranging over 0.1K, < K < 0.975K,., where for the plane-square Ising
model K, = 0.440686794.... We have then fitted the auto-correlation times
to a power law, with the most weight being given to the points closest to the
critical temperature. We have obtained these results,

T =< 0.46(1 — K/K.)~%7,
T < 0.22(1 — K/K.)~2%,
T3 < 0.19(1 — K/K.)~*97,
75 < 0.137(1 — K/K,)~ 19, (2.1)

where the subscripts 1, 2, 3, 5 refer to the four cases described above. The
dynamical scaling exponent, z is defined by 7 = £#, where ¢ is the spin-spin,
correlation length. Since in the two-dimensional Ising model the correlation
length exponent v is exactly unity, as £ o« (1— K/K.)~" the exponents in (2.1)
are direct estimates for the dynamical critical exponents in each of the above
methods. The exponent z describes the “critical slowing down” in the sense
that the length of the necessary Monte Carlo simulations for a given accuracy
is proportional to the auto-correlation time which in turn is governed by z.
The simulation time increases dramatically as the critical point is approached
when z is large. By way of comparison, Stauffer [6] quotes the Monte Carlo
result z; = 2.17 + 0.01, and Dammann and Reger [7] give the series result
z1 = 2.183 + 0.005.

In order to estimate the effectiveness of these procedures, we have run sam-
ple problems on 32 nodes of the CM-5. Since each node has four vector units
attached to it, this configuration is effectively equivalent to 128 central pro-
cessing units (cpus). This is to be contrasted with the 512 cpus used in our
computations on the CM-200. We have used a trial problem where the inverse
temperature is 0.9K. on a 64 x 64 lattice for the basic problem. The number
of lattice updates between the sampled configurations is as given by (2.1), and
we have used 512 sampled configurations for each of the 40 coarse grained sam-
ples, as explained above. For this problem we have considered a mode where



4.

we spread the problem across the machine and using all the nodes to process
the problem in parallel, and the “idiot parallelization” mode, where 128 inde-
pendent Monte Carlo problems (reducing the number of sample configurations
per coarse grained step correspondingly) were run with each one running in a
single cpu. For these parameters in cases 2 - 4, for the very same code, the
idiot method was an order of magnitude faster on the CM-5 than the fully
parallelized method, while in case 1 there was little time difference. For the
trial problem we have found for case 1, 2381 seconds, for case 2, 1727, for case
3, 852, and for case 4, 267 seconds. Thus, the block-internal spin-summation
method results in an order of magnitude improvement in the speed for the trial
problem. The programs were all written in (Connection Machine) Fortran 90 in
the same general style and no particular effort has been devoted to streamlining
them as our current interest is in their relative speed.

A further set of parameters has been run for case 4 (the five-diamonds). A
256 x 256 lattice which has 16 times the number of spins in the trial problem
was spread across the machine, but was run for only 32 repetitions for each of
the 40 coarse grained samples. Since it was run for K = 0.975K ., the number
of lattice updates per sample is 151 instead of the 11 for the trial case. It
required 7148 seconds which is roughly twice as long as would be expected
in the idiot mode. Presumably for larger problems yet, the gap between the
different modes will close further.

The computational times quoted in this section have been computed for
comparability from actual cases which did not have exactly the proper number
of skips between the sampled configurations.

3. Finite Size Behavior in Three Dimensions.
In a previous paper Baker [2] reported on the finite-size effects on the renor-

malized coupling-constant in two dimensions. The relevant thermodynamic
function is,

&*x(K)
_ v om?
0 =gy &
g = . gr(K), (3:2)

where ¢g* is the renormalized coupling constant for the model. The quantity
v is the volume of a unit cell on the lattice, a is the lattice spacing, x is the
susceptibility, H is the magnetic field, and d is the spatial dimension. The
series results imply [8] that g* = 14.66 + 0.06. In that paper [2] it was found
that in two dimensions the value of limy,_,, g,(K.; L) was less than about 3.1
while the values of g,.(K; L) obtained for K < K, are very consistent with the
series results for an infinite system, provided &1, /L < 1/(7+ 1), where L is the
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Fig. 1 Plot of g,(K;L)(K/K,)*/? for the three dimensional Ising model for

simple cubic lattice systems of size L x L X L spins versus &1, (K)/L. The point
for £ = 0 is common for all values of L.

system width. This difference was explained by analysis of finite-size effects.
The correlation length was determined by fitting as parameters 522 and A in,

d -1 d
! x(L¢ cj’K)) _ !
4 sin?(=q-&,) (1 - =22 = + A sin“(=q-¢e,), (3.3
> (54 )( 40K 3 ;:1: (50-e), (3.3)

to the five smallest, non-zero values of ¢ allowed by periodic boundary condi-
tions. Eq. (3.3) is exact with A = 4 for the one-dimensional Ising model.

It is of considerable interest to explore the finite-size behavior of g,(K; L)
in three dimensions. To this end we have run a standard Monte Carlo code,
(similar to that of Freedman and Baker [9]) on the CDC7600 for a very substan-
tial period of time. Some of our results are displayed in Fig. 1, which shows
the behavior of ¢,.(K; L) when plotted against £, /L. Results are given for
L = 2,3,20,40,60,80,100. The results for L = 2,3 are from exact summation
and not Monte Carlo. The attention of the reader is drawn to the region of
the plot where £1,/L > i. In this region we see very substantial data collapse,
and it is in this region that we see that the finite-size effect is dominant. In
the case of quantities which diverge, this finite-size effect is called finite-size
rounding. In the simulation studies of the the three dimensional Ising model,
it is also of interest to know how large a value of 1 /L can be used and still
keep |g-(K;L)/gr(K;00) — 1] < 0.01, for example. {When K is not too close
to K., g-(K;00) can be evaluated to adequate accuracy by series methods [8].}
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For L=2, the answer is £ /2 ~ 0.08 and for L=3, the answer is £3/3 ~ 0.11.
For the case L = 20, K = 0.212, we compute that &5 = 5.26 + 0.03 and for
the case L = 40, K = 0.215 we compute that &4 = 4.46 4+ 0.09. Since the
correlation length in this region of K is monotonic in K, it must be that for
L = 20 and K = 0.212 that the finite-size, correlation-length value is well
over a percent off the infinite-system value. Note is made that series analysis
gives £(0.212) & 3.6. Thus £1,/L = 0.26 is too large for accurate work. This
result represents a criticism of the work of Freedman and Baker [9] who used
&1, /L =~ 0.275, and also of the work of a number of other workers. Series analy-
sis is consistent with the above quoted results for K = 0.215, L. = 40 within the
errors of both analysis. Since the results for L = 2,3 suggest that the allowed
value of &1, /L increases with L, we think that the allowed value of £, /L for
large systems is somewhere between 0.11 and 0.26. The values £, /L < 0.10
may very likely be safe for one-percent-level work.

The authors wish to thank the Los Alamos Advanced Computing Labora-
tory for making time available on the CM-200 and the CM-5 for this project.
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