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I. INTRODUCTION AND SUMMARY

For a long time, the mainstay [1,2] of the theory of the equation of state at higher
temperatures and densities has been the Thomas-Fermi or the Thomas-Fermi-Dirac
theory. These theories correctly reduce to the electron ideal gas [3] at sufficiently high
temperature, but as we [4] pointed out previously, even the first deviation from this
limit is incorrectly given by these theories. Our interest in this paper is to investigate
the quality of these approximate theories in light of some of the results of modern
quantum many-body theory. In the second section, we derive from quantum, many-
body theory by means of finite- temperature (Matsubara) perturbation theory the
corrections to this limit through order e*, where e is the electronic charge. These
coefficients are functions of the de Broghe density (3.2) alone. In the third section,
we obtain easily computable representations of these coefficients which are accurate
to at least one-tenth of one percent. This accuracy is sufficient for our purposes. In
the final section, we adapt an accurate representation of the Thomas-Fermi pressure
(which we [5] have used previously) to incorporate the new coefficient information
which we have now obtained. We find that double-digit percentage differences result
in the pressures of quantum theory and Thomas-Fermi theory.

II. PERTURBATION THEORY

One goal in this paper is to compute, for general de Broglie density, the perturba-
tions to the ideal Fermi gas pressure caused by the electrostatic interactions between
electrons and ions. We will treat the electrons as Fermions, but will treat the ions
as Maxwell-Boltzmann particles. The treatment of the ions could be improved, if
required. The pressure we will be concerned with is actually the total pressure minus
the ideal gas pressure of the ions. We start with the electrically neutral Hamiltonian,
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ions of charge Z. To treat our problem we employ finite-temperature perturbation
theory (Matsubara [6]). It is known that when this theory is applied to the Coulomb
potential, that some of the terms diverge in a rather serious manner. Gell-Mann
and Brueckner [7] however have shown that if all the so-called “ring-diagrams” are
summed up before the integration of the momentum transfer is performed, then the
result is finite, but the order in the coupling constant e? is changed. We will discuss
this point in more detail below. Bedenov [8] briefly describes his investigation of our
case for a degenerate plasma. A fuller description is given by Abrikosov et al. [9]

To begin we note that the thermodynamic potential p(2, where p is the pressure
and  is the volume, (See, for example, pp. 68-71 and 105-107 of Landau and Lif-
shitz [10]) is given by —kT log Z where k is Boltzmann’s constant, T" is the absolute
temperature and Z is the partition function from the grand canonical ensemble. In
terms of other thermodynamic quantities p2 = T'S + uN — U, where S is the entropy,
w is the Gibbs free energy, or thermodynamic potential, per particle, N is the number
of particles, and U is the internal energy. The perturbation series for the pressure is
related to that for the energy by the observation that,

0(—kT log Z)

o =e V), (2.2)

where V is the interaction potential, i.e. everything proportional to e? in (2.1). Thus,
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relates the series for the energy and that for the pressure. Note that, of course, the
wave function changes as e increases in the integral.

The finite-temperature perturbation series is conveniently described in the wave-
number space representation. The wave-number representation for the interaction
potential is
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The rules for the perturbation series for the interaction energy which insure that
the proper quantum mechanical expectation values are taken are briefly: First draw
the Goldstone type diagrams which are associated with the various terms in the
perturbation series. We in fact use the type of diagrams discussed by Baker [11].
Here there are no lines entering on the left nor leaving on the right. Label every
line in such a way that the wave-number is conserved at every vertex. Associate a
frequency with each independent wave-number. The frequencies must also obey a
conservation rule at every vertex. The frequencies on every Fermion line are odd
(wp, = (2n + 1)7kT) and those with every Boson line must be even (w,, = 2mnkT).
Now with each fermion line (particle or hole) associate a factor of
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where w], and p’ are the frequency and the wave-number associated with that line.

We define,
hip?

€(p) =

where % is Planck’s constant h divided by 27. With each Boson line (the wavy lines
internal to each interaction symbol) associate a factor of ¥(¢’) where ¢ is the wave-
number associated with that line. Note that if the vertex is not electron-electron,

(2.6)
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then a factor of Z or Z2 would also be need as the case may be, and as it is really
momentum that is conserved, account of the masses must be taken. Next examine
the diagram of order n vertices and count the number of hole lines A and the closed
loops [ made by the combination of the particle and hole lines. Multiply the term by
a factor of

(2s + L)Y (—1)P{(—kT)"+?
(27)3(nt1)2n

(2.7)

Next sum over the independent frequencies, take the limit as 7 — 0, and finally
integrate over all the independent wave-numbers. The following identities are useful
in doing the frequency sums.
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Our goal will be to compute the corrections to the pressure to the order of e?.
The first step is to examine all the diagrams up to and including two interactions. We
will, following Abrikosov et al. [9], ignore the ion exchange terms as relatively small.
The electron-ion exchange terms do not exist as they are not identical particles. In
first order in e2, the direct terms, D1 shown in Fig 1, cancel as among the electron-
electron, electron-ion and ion-ion terms by electrical neutrality. The first exchange
term, F'1 shown in Fig. 1, by our rules, gives the contribution,
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which agrees with the results of Abrikosov et al. [9], but is % times that of the

Thomas-Fermi-Dirac approximation of Cowan and Ashkin [2]. In the difference, the
factor of two comes from Cowan and Ashkin’s over counting of the number of exchange
terms, and the factor of three comes from their use of the viral theorem, which is valid
for the Thomas-Fermi model [1]. This result concludes the study of the first-order
perturbation theory.

In second order in e? there are a number of cases to consider. The first is the

so called direct term, D2, Fig. 2. We work initially, for ease of exposition, with the
electron-electron terms. Since there are two equivalent direct terms, we get,
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where w; and ws are odd and wg is even. The thing to notice is that the integral
over ¢ diverges as ¢ — 0. The solution to this problem was given by Gell-Mann
and Brueckner [7] in the context of the ground-state energy problem. It is to sum
up all the “ring diagrams” before doing the integral over the momentum transfer, q.
The Fourier transform trick used by them to sum up these diagrams to all orders is
basically incorporated in our formalism, if we are careful to wait until after summing
up all orders to sum over wz. Doing the sums over w; and ws in (2.10) we get,

o) Z/ {Sm =( ,w3)r, (2.11)

where
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In third order in e? there is just one term, Fig. 3, which gives the contribution

2027 Z/dq { [Sﬂe E(Cf,%)r}, (2.13)

In higher-orders, there are many “vertex orders” of the same diagram, but by the
arguments of Gell-Mann and Brueckner [7], they are represented in our formalism by a




single term. The whole series of these most highly divergent terms in the perturbation
expansion for (V') then formally sums to

B k-T 87re2E((j',w3)]2
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When we convert (2.14) to the series for the pQ, by (2.3), we get, interchange the
orders of integration,
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The next problem is to analyze the leading order behavior in the limit of small
e2. To this end we introduce the dimensionless variable,
y2 _ Ze?
kTTb ’

Q= —7rrbN (2.16)

If we re-express the wave number ¢ = yp, then = becomes,
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where

Ae = h*(2yp - k — y*p?)/(2m), (2.18)

and one term in (2.17) of nominal order y? is not shown because it vanishes on

integration over the angles of k. In order to do the sum over ws, there are two cases
to consider. In the first, w3 = 0, and

P | Lo [ e(k) - p
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which is independent of p. In the case where wg # 0, = is of nominal order y which
is already small compared to the wg = 0 case which was of order unity, but again the

integration over the angles of k reduces the size even further to the order of y2. Thus
we only need to retain the ws = 0 term to give the leading order, plus the next order
as well, for the sum of these ring diagrams. When we recognize that integration by

parts etc. yields,
o 1 9 T
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we may write that our sum of ring diagrams is
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which is of order e® with an error term of order e®. The divergence in the integration
over ¢ has been converted into a lower order in the expansion parameter.

3/2
, (2.21)




Fig. 4. The second-order exchange-interaction diagram.

The work to include the ion terms is just the same, except that e? is multiplied by
— 7 for the electron-ion interactions and by Z?2 for the ion-ion interactions, the ions
are being treated as spinless, and the ions have a Maxwell-Boltzmann distribution
rather than a Fermi-Dirac one. The proper change is to make = the sum of the
electron (2.12), plus Z?2 times the ion function, which substitutes,

ion(F) = 5 exp{[u — e(F)]/ (K1)}, (2.22)

for n(E) The factor % is to take account of no ion spin. Thus (2.21) becomes, to take
account of all the interactions,
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since the integral over the resulting function in the ion case is easily expressed in
terms of the density normalization. This finishes the study of the terms of order e,
or the Debye-Hiickel term.

We now consider the calculation of the terms of order e* which we call the
second exchange correction. We do not know of previous work on this term. The
first contribution F2a is the exchange, Fig. 4, of the the direct term shown in Fig. 2.
Following of rules as expounded above, we obtain for electron-electron exchange, by

reducing the integrand to dimensionless form,

3/2
. (2.23)
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where use has been made of the standard identities,
inh inh
cothz 4 cothy = sinh(z +y) tanhz + tanhy = sinh(z +y) (2.25)

sinh z sinhy’ coshz coshy’

to obtain this form.
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Finally, there occurs to this order in perturbation theory one term which does not
occur in the ground state energy expansion, plus its three exchange variants. They
are shown in Fig. 5. The reason that they do not appear in the ground state energy
perturbation theory is that, contrary to finite-temperature perturbation theory, in
that theory there can not be simultaneously a hole and a particle with the same
momentum. In finite-temperature theory, we are dealing with an ensemble and hence
can have, on the average, fractional occupation of a state, and hence this case is
not forbidden. In the first three terms shown in Fig. 5 is at least one interaction
in which zero momentum is exchanged. All three of these cases cancel among the
corresponding electron-electron, eletron-ion and ion-ion terms by electrical neutrality.
In the final case, whose contribution we call E2b, there is exchange at both vertices.
The contribution here for electron-electron exchange can be worked out by taking
the 0/0X of the second identity of (2.8) to get the frequency sum where one of the
denominators appears squared. Again reducing the integrand to dimensionless form,
we obtain,

 (4me?)? <2ka>5/ 2 / dky ds dics
PE2 = 93k (2m)9 \ 12 (ky — k1)2(Fky — k3)?
« sech? (%k% — ﬁ)
[1+exp (k3 — #)] [1+exp (k3 — #5)]

Again, as in the first exchange correction, we ignore here, and in E2a, the ion-ion
exchange as being relatively small.

(2.26)

III. FUGACITY EXPANSION OF THE COEFFICIENTS.

In order to express the results of the previous section in an organized manner,
we may write the pressure (total pressure minus the ideal gas pressure of the ions),
to the order we have obtained it as,

pQ2
ZNET
where y is given by (2.16), the de Broglie density is,
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g1 (C) = 07
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with the p’s given by (2.9, 23, 24, and 26). The value of go(¢) is well known (See for
example Huang [12]) and is given by

90(¢) = , (3.4)

2
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and
> zy"e Vd
In(Z) :A ﬁ. (36)

The expansions of both ¢ and go(z) in powers of the fugacity z are also well known
and easily derivable from the straightforward expansions

J+1ZJ

I,(2) Z n+1 , n>—1 (3.7)
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The goal of this section is to expand all the g;’s in series in the fugacity. In the
next section we use the results of Baker and Johnson [3] who have reverted the series
for {(z) to give the series for the fugacity in powers of the de Broglie density z(().
This method will permit the expression of all the g;’s as series expansions in powers of
the de Broglie density. Baker and Johnson [3] give the first 36 terms of the expansion
for go(¢) and 37 terms for z(¢). This computation required the retention of a great
many decimal places because it is numerically very ill-conditioned.

The deduction of the series for g2({) may be reduced to previous work (Baker

and Johnson [4]). If in (2.9) we make the change of variables, y; = i*k?/(2mkT) for
1t = 1,2 and then integrate over the angles we get,

\/ 11+ /Y2
47e? 2mkT VAT
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G2 — = 7 X(0), (3.8)
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where X(() agrees with that of (7.2) of Baker and Johnson [4]. They give the result,

> (_Z)n1+n2
X(()=m . 3.9
O=7 % e (5.9)
In the Debye-Hiickel pressure (2.23) we have the integral,
B, £) — KT\? [ zy3evd
/ disech? [ ) 1) _ g (2mh / zyze”Vdy
2kT A 0 (14 zev)?
3. (2mkT\ 2 & (—1)i+14
Jj=1
2mET *
In ppas (2.24) there appears the integral,
/ dkydRydd  sinh(§ (§+R—R)) [ ((@+k)* g
C@+Ek k) G (T+F— k) 2 2KT
— —1
Ko op (k2 —q)* p k3w
h({ -+ — —— ) cosh — h(2——— 3.11
x cos (2 2kT> cos ( 2 okT | °° (2 2kT> , (310)
which using the notation 7 =log z = u/(kT') we can rewrite (3.11) as,
dky dkadg (! L
23/ e / dX exp[A- (§+ k1 — ka)]
(7 + k1 — k2)? J1
om—q?—q- (k1 — ko) — k2 — k2
exp[2n — q° — G- (k1 — ka) — b — k3] (3.12)

% k . )
(14 en—(@+k)?)(1 4 17 F1) (1 4 en—(a=k2)*)(1 4 e7F3)

where we have artificially introduced the integral over A for later convenience. Next

let us make the change of variables, E3 = Eg — l._":l —q. We now expand the denominator
in powers of z as we have done before, and we obtain,

[o o]

tistisis [dqdEdks 1 o
93 Z (_1).71+Jz+.73+]4/ q 2;2 3/ dX exp[(2+ j1 + jo + ja + ja)n — 2k?
d1, d2, js, ja=0 q°r3 1
— k2 —q? 2Ry — 2Ky Ko — (14 X R — 1 (¢4 K1) —jok? — o (R +Fo)? — ja (R + Fo+ )]
(3.13)

If we now look at the integration over El, we may do it by completing the square in
the exponent, and integrating over the cartesian coordinates. The step yields,

2371'% f: (_1)j1+j2+j3+j4 dq_'dﬁ3
P PR T PR P ALV el
—[(1+j1+72) (1475 +ja) k3 + ((2+j1 +J2 + s +Ja) (1 +254) —2(1+ j1 +Ja) (14 J3 + a)

F A2+ g1+ o 4Gz +5a))T s+ (L4 1+ ja) (1 + g2 +3)g?) /(2 4+ 41 + Gz + 53 +ja) }-
(3.14)

1
/ dX exp{(2+j1+j2+js+ja)n
~1
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The next step is to do the integrals over all the angles except that between ¢ and

El, whose cosine we denote as 7. Then, doing the integral over amplitudes by the
standard method for a quadratic form in the exponent, we get,

2471-% io: (_1)j1+j2+j3+j4
L~ 24+t jet st a

J1sJ2,73,74=0

1
/ dX exp[(2 + j1 + jo + J3 + ja)7]
1

-
[ —2 (315
/_1 VAC — B272 ( )

where
AC = (1 +j1 + j2)(1 + 73 +ja)(1 + g1 + ja)(1 + j2 + J3)
B =a+ bA (3.16)
a= (2471 +j2 +Jjs +ja)(5 +Ja) — (L +j1 + ja) (1 + Js + ja)
b=5(2+j1+j2 +js + ja)
The integral over 7 is elementary and yields,
2PraT(() =

2.3 f: (—1)drtiatistia y24i1+da+is+is /1 bdh . (a—|—b>\>
. ' i ' : sin
b2+ 1+ ja + Ja + Ja _1a+bA VAC Ji3.17)

jlajZaj37j4:0

which yields the expansion and defines T'({) for later use. As a practical matter, we
still need to do the integral over A. It can be evaluated in terms of dilogarithms
of complex argument (Grobner and Hofreiter [13], 341.4b) which does not improve
the situation much over direct evaluation. The substitution which we will make in
the next section in order to convert to a series in { is numerically ill-conditioned so
we need a method which will yield highly accurate values. The integral we need to
evaluate is of the form

d_V sin— i (vt (3.18)
0 = k(2K 4+ 1) kl(2k +1)27
where we use the notation,
(9)o=1, (@r=9-(g+1) - (g+k—-1), k>1 (3.19)
The radius of convergence of the series (3.18) is |v| = 1. Its use when v &~ +1 is

too slow to be practical. We know that the nature of those singularities is /1 — v2. A

uniformizing transformation which regularizes v/1 — v? will make the whole function
regular at v = £1. We choose the transformation,

2 _ 2
02_8w(3 w?)

R S 3.20
9 4+ 6w? + w?t’ ( )

which converts,

1—02) = (3.21)

1+ wQ'
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and makes the points v = %1 into regular points w = 1. There will be singular points

at w = =4i4/3 which leaves a radius of convergence of 3 in w?. This improvement
is adequate for our purposes. The substitution of (3.20) in the series (3.18) must
be done with care as many decimal places will be lost in the tripling of the radius
of convergence. Never-the-less, we have carried this computation out in multiple
precision arithmetic (58 decimals) and obtained adequate accuracy to evalute the
series coefficients in (3.17).

The contribution to the pressure pgs, contains the integral,

(3.22)

/ dky dks dks sech® (347 — 547)

(Fy — k1)2(ky — ks)2 [L+exp (k3 — ¢5)] [L +exp (k3 — 7)]
Let us make the change of variables p; = Eg - El and pp = Eg — El. If we now expand
(3.22) in powers of z, as we did above, we obtain,

(o)

o o di di
4 Z j3(—1)Jl+”+33_3e(”1+72+73)”/ P1 p2dk1 exp(—j1p} — jos
G12i2da=1 Pip)

— (j1 + J2 + jas)k} — 25151 - k1 — 2jape - k1), (3.23)

If we integrate over El by completing the square in cartesian coordinates, then (3.23)
becomes,

4ms i jg(—1)Jrtiztia=3(dr+iatia)n /dﬁl dps
: . N 55
J1sd2,53=1 (J1 +Jj2 +J3)> pips

. . . 2 . . . 9 PR -

_ — 2 .

% exp ( J1(J2 + ja)Pt = Ja(j1 + J3)p3 + 241 p2> (3.24)
J1+J2+73

If we integrate over all the angles except that between p; and ps and denote the cosine

of that angle by 7, then if we integrate over the magnitudes in the standard way for

a quadratic form in the exponent, we get

© ]'3(_1)j1+j2+j3—3e(j1+j2+j3)'fl

87r37r% Z

j17j2aj3:1

J1d2(j1 + g2 + 3 )2
" /1 VJ1jedT
1 (ja(ja + j1) + 33 + jija(l — 72))3

(3.25)

The final integral can now be evaluated to yield,

N o o —1 Jit+je+is—3 (d1+i2+7s)n Y4 1.
1675 Y Ja( ,), —  sin™! Uz ) (3.26)

J1,J2,53=1 J172(J1 + 72 + J3)2 (J1 +J3)(j2 + J3)

which can be rearranged in the slightly more convenient form,

167r%®(4) =

167% Z Z Z it N N (\/(J—jz;ff—h)) , (3.27)

J=3 Ji=1 jp=1 J1j2
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which also defines ©(() for later use.

This calculation completes all the necessary ingredients to expand the various
contributions to the pressure in powers of the fugacity.

It is useful at this point to recapitulate the resulting values of the g;(¢) of (3.3).
They are

(C) = —W%B (2) cix

~ 1 2
#0775 |2+ s o) (528
50 = g7 (2) 30 +2000)

where go(() is given by (3.4), X({) by (3.9), T(¢) by (3.17) and ©(¢) by (3.27). For

a pure element, Z = Z. In the case of mixtures we can compute,

7. .72

Zspecies NJ ZJ Z _ Zspecies NJ ZJ
) = ’

Especies NJ Zspecies NJ ZJ

where IV; is the number of ions and Z; is the nuclear charge in each species.

Z =

(3.29)

IV. REPRESENTATION OF THE COEFFICIENTS AS FUNCTIONS
OF THE DE BROGLIE DENSITY.

In the previous section we have derived series expansions in the fugacity z for
the various functions need to calculate the expansion of the pressure in powers of the
electronic charge. While is is possible to express the fugacity in terms of the de Broglie
density (3.2) by the inversion of (3.5) and to give a compact representation there of,
it is more convenient to work directly in terms of the de Broglie density. It is our
aim in this section to produce representations of the various quantities as functions
of the de Broglie density which are accurate to within about 0.1%. The series for the
fugacity in powers of the de Broglie density (for the idea Fermi gas which is what we
actually require) has been given by Baker and Johnson [5]. It can be substituted into
the expressions of the previous section to give the required series in the de Broglie
density. Then following the method of Padé approximants [14], we can construct the
require representations. Although it is not required in this work, we give, for the
convenience of the reader, the following representation for the fugacity z(() as,

2(¢) ~ exp{¢[0(Q)]7} — 1, (4.1)
where
0(¢) = 14 0.23728611¢ + 2.4737617 x 1072(? 4 1.4222435 x 1073(3
~ 140.67662597¢ + 0.14567696(2 + 1.4254337 x 10~2¢3 + 8.0482522 x 1044
(4.2)

within 0.1%.
For the convenience of the reader, we recapitulate the previous results of Baker
and Johnson [3] for go(()

1 + 0.61094880¢ + 0.12660436(? + 0.0091177644¢3

~ 4.3
90() 1 + 0.080618739¢ ’ (43)
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The general method we use to obtain these representations is first to compute a fair
number of terms in the series expansion. Even with an explicit representation for the
series as a function of the fugacity, care must be taken in the re-expression as a function
of the de Broglie density because the problem is numerically ill-conditioned, and many
decimal places can be lost. We have found that the retention of 58 decimals is sufficient
for all our purposes. The next step is to determine the asymptotic behavior. From
this information, we compute a function of the original series (e.g., the cube) which
can be exactly represented, both at the origin and at infinity, by a Padé approximant.
We then compute a sequence of Padé approximants and use the lowest order one
which gives the desired degree of accuracy. Since, for our problems, these sequences
converge fairly quickly, this method seems to be quite efficient.
Using these methods, we obtain for X (),

W[

X(¢) ~ 2 T 1+ 0.088412769¢ (4.4)
TS 9o+ 0.79551953¢ + 0.19350034¢2 + 0.013716390¢3 | '’ '
where .
3 3
X)) <2 [TﬁC} as ( — oo. (4.5)

Since differentiation does not necessarily preserve the accuracy of approximation,
instead of using (4.2), use the separate representation of Baker and Johnson [4],

1 _[vs(Q) s
go<c)+<ga<<>”[u5<<>] ’ (4.6)

where

v3(¢) =1+ 0.17549205¢ + 1.1833437 x 1072¢? + 3.0923597 x 107*¢?,
us(¢) =1+ 1.2361522¢ + 0.54327035¢* +9.7985998 x 10~2¢®
+6.1912639 x 1073¢* + 1.6191557 x 107%¢°. (4.7)

For ©((), using the result,

o) = %c as ¢ — oo, (4.8)

which is obtained by taking the limit as z — oo of ® and { and evaluating their
integral definitions, we obtain the representation

o)~ 18, (4.9)

where

p6(¢) =0.30229989¢% + 5.0287616 x 1072¢* + 3.6103004 x 1073¢5
+1.0210313 x 10~4¢¢,

05(¢) =1 + 1.2478566( + 0.55778521¢* + 0.10432105¢3
+7.2823921 x 1073¢* 4 2.1384429 x 107*¢°. (4.10)
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The representation of T'({) presents an additional problem not present for the
other functions. The asymptotic value as { — oo is proportional to (, as in the case of
0O, but here we have not been able to evaluate the asymptotic coefficient analytically.
This coefficient is the zero temperature diagram evaluated approximately by Monte
Carlo by Gell-Mann and Brueckner [7] in their study of the electon-gas correlation
energy. We have taken a different approach to its evaluation. We have computed the
series through the 31st order and obtain the asymptotic result,

T
% = 0.3025 = 0.0004, (4.11)

where it is the apparent error which we have quoted. This result corresponds to

622) = 0.04814 4+ 0.00006 in the notation of Gell-Mann and Brueckner, in agreement
with their result of 0.046 + 0.002. When we use this asymptotic value, we obtain the
representation,

(4.12)

where
v6(¢) =1.5397859¢2 + 0.681831¢> 4 0.10939850¢*

+ 8.8741342 x 1073¢% + 2.67165364 x 10~4¢6
75(¢) =1 + 1.3317659¢ + 0.66394907¢* + 0.15311424¢3
+ 1.6850905 x 1072¢* + 8.8319130 x 10~*¢P. (4.13)

These results supply the necessary representations to compute the g;(¢) of the previous
section to within 0.1%.

V. GLOBAL PRESSURE REPRESENTATION.

In a previous paper [5], we derived a global representation of the Thomas Fermi
pressure. We used as input the corresponding expansion in e for Thomas-Fermi
pressure, and information on the asymptotic behavour at low density for fixed de
Broglie density. We have subsequently found that there was an error of a factor of
2 in (4.9) of reference 4, which meant there was an error of a factor of two in the
corresponding Thomas-Fermi g4. We have corrected this error, removed an extraneous

factor of Z3 in (4.8) of reference 5, and thus the appropriate representation for AP

where,
P=AP+ Pcold curves (5]-)

with Peolq curve the zero temperature pressure as a function of density, is

196.68897Z 5 5§y ()

RS S fs NS h e

AP ~ (5.2)

We use the notation,

o= (o) et y=(Y) va (53)

5o = lim g:(¢)¢cG=2)/3
g; = lim g;(€)¢ : (5.4)

—\ /3 |
50 = () 55 g (5.5)
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Through the use of (5.3), (3.1) is readily converted into an expansion in 1/z and (5.2)

was constructed to match that expansion through order (y/z)* for Thomas-Fermi

theory. The behavior of the g4 term has been modified at large = in order that the
z?, z2° z° terms for large x should all have their origin in the last term of the
denominator of (5.3). The value 0.008 was selected to prevent an underpressure due
to the g4 term at large x. We have a revised fit for dj of the same form as in reference
5 and it is

| 34.201282 4 (257.72103C & — 161.51875)(s /y/z

dy - (5.5)
1+ 14.591736¢s //x
The representation which we now employ is
AP =~ (5.6)

196.6889Z % 25y (¢)

2350) | o (4840 4 (3200
ot (Zgo(o s (20) ) +m3{c290(<)}2

[
Neli

NaYl
(V)
~~
e
N
Nl

30(¢) 1+ 0.008z do

which matches the small m%-expansion through order (a:% )* as determined in the pre-
vious sections, and matches the large = behavior, as described above, of the Thomas-
Fermi theory. Note is taken that there remains the problem of determing the proper
quantum mechanical results for very dilute systems.

In Fig. 6 we have displayed graphically the difference for the pressure between
our many-body theory and the Thomas-Fermi theory for the case of Aluminum. The
Thomas-Fermi cold-curve is used in both cases. Since it is rather poor, a more realistic
curve should be used for practical work. In Fig. 7, we display the differences for
Cesium. It will be seen that there is little difference at the highest temperatures and
that, generally speaking, we obtain lower pressures at higher densities and higher
pressures at lower densities. The order of magnitude of the effect is double digit
percentages.

One of the authors (G.B.) is pleased to acknowledge partial support from ARO
to enable him to attend the workshop.
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