Renormalized coupling constant in the Ising model
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Abstract. The three dimensional Ising modeis studied by means of Swendsen-Wang
cluster Monte Carlo method. The simulation is performed on finite size systems upto
L = 96 and the renormalized coupling constant is estimated as g* = 25.0(5), in

agreement with the conjecture 0 < limyz o0 limg ., g(K, L) < g
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1. Introduction and Summary

For about a third of a century now there has been uncertainty about a fundamental
question in the theory of critical phenomena. The question is whether the “hyperscaling
hypothesis” is valid or not. We will report our results on this question for the three
dimensional Ising model. (A preliminary report was given in reference [1].) The
hyperscaling hypothesis relates to the relations between critical indices which depend
on the spatial dimension. To understand what the question really is, we give a bit
of background. The Ising model, of course, is defined by spin variables on a spatial
lattice which can take on the values plus or minus unity. The Hamiltonian, H, for
the model is the exchange energy J times the sum of the products of all the nearest-
neighbor spins. We consider the ferromagnetic case where J > 0 and abreviate J/kT
by K, where k is Boltzmann’s constant and 7' is the temperature. An important set
of objects to study in this model is the set of spin-spin correlations. We define them
in terms of Sy = [];ca Si, Where the s; are the individual spins and A is an index
set. Then the spin-spin correlations (S,) are the expectation values with respect to
the Gibbs weight exp(—H/kT)/Z, where Z is the partition function which is just
the normalization for the Gibbs weight. These correlation functions have a number
of important properties. Griffiths [2] showed that (S4) > 0, and (generalized by
Ginbre [3]) (S4Sg) — (S4)(Sp) > 0. In addition they possess [4] the cluster property,
(SaSBY—(Sa)(Sp) < O(e_“zp) where p is the distance between A and B and p is defined
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by the two-point correlation function through the relation
. 2
Jim (ss3847) o exp(—plr). 1)

In (1) we consider the case where K < K., the critical value, as here (s;) = 0 and the
two-point function decays exponentially [5]-[6]. In addition they have the property of
“two-point dominance” as shown by the Lebowitz [7] four-point inequalities,

(sisjsks1) — (sisj)(sks1) < (sisk)(sjs1) + (sist)(sjsh), (2)

and for higher-point correlations by Newman’s [8] Gaussian inequalities. These are
unusual inequalities in the sense that higher-point expectation values are bounded in
terms of lower order ones. In (2), if spins ¢ and j are close together but far from [/ and k,
we have an example of the cluster property. To get ahead of the story, the key question
turns out to be whether the inequalities like (2) saturate and become equalities or not.

To become more quantitative, let us define a few quantities. First the magnetic
susceptibility is given by

X(K7 L) = L_dz;<3isj>> (3)

where for ease of exposition we consider the hyper-cubic lattice family with edge L
in spatial dimension d. The critical point K. is the smallest value of K for which x
diverges. It is at this point that the p defined above goes to zero. It is convenient to
define the correlation length, ¢ which is related to 2.

_ Er,s |7’|2<5858+7‘>

*(K,L) = 4
and also to define the second derivative of x with respect to the magnetic field H as,
82
8—HXQ =L7" 3 [(srsssgsu) — (srss)(sgsu) — (srsg)(sssu) — (srsu)(ssse)] . (5)

rstu

All of these quantities diverge at the critical point like some power of (K, — K). The
conventional notation is

0%y
OH?
which defines the critical exponents or indices 7, v, A. It is known [9]-[10] that these

x o< (Ke—K)7, o (K. —K)™, o (K. — K)7%4, (6)

critical indices satisfy the inequality
v+ dv > 2A. (7)

If we take the idea [11, 12] that there is only one important length near the critical
point and that it is £, and that everything is a function of the ratio of the distances to
&, then we come to the conclusion that we should have an equality,

v+ dv = 2A, (8)
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which is a hyperscaling relation. This equality is equivalent to the idea that the
cluster property holds with a non-zero coefficient for the four-point, spin-spin correlation
function, no matter how we pair up the variables. At this point it is worth while to
remember a featue of the Gaussian model. (This model is the same as the Ising model,
except that instead of the spin variables taking on only the values £1, all real values
are taken with probablility e™**/2 ds /v/27.) In this model, the < sign becomes and =
2y _

sz = 0. This result shows that there is, in principal, no restriction

on reasonable models that prevents the leading order of the correlation functions from

sign in (2) and

cancelling out. When this cancelation occurs, the the inequality sign is the correct one,
and the hyperscaling hypothesis fails. Aisenman [13] has shown that it also fails for
the Ising model for d > 4. On the other hand, for the two dimensional Ising model the
hyperscaling hypothesis is valid [13, 14]. For the one-dimentional Ising model, equation
(8), as appropriately modified to take account of the zero-temperature critical point,
holds [15].

We mention that there is another hyperscaling relation involving the specific heat
index a which converts the Josephson inequality [16], dv > 2 — « into an equality. The
index « is defined by Cy o (K, — K)~* in the limit as K — K. This relation fails [15]
in one dimension, and can at best be said to hold weakly in two dimensions, because in
two dimensions v = 1 and the specific heat at constant magnetic field C'y diverges like
In(K,.— K) which corresponds to an a of zero. All of these exponent relations correspond
to the critical point limit of the logarithm of estimator functions. If instead we look at
the estimator function, we expect it to approach a finite number at the critical point
when hyperscaling holds. In the case of a logarithmic approach, this expectation is
not fufilled, and the estimators function fail to satisfy the expected properties, but do
not strictly speaking cause a failure in the exponent relations. We will not study this
hyperscaling relation in this paper, except for some estimates of o and v.

The interest in this question for d = 3, 4 was heightened with the introduction of
the renormalization group theory of critical phenomena by Wilson [17], and for which
he got the 1982 Nobel prize in physics. One of the most powerful computational tools
for this theory is the field theory method with its expansion in variable dimension, i.e.,
the e-expansion [18]. The hyperscaling hypothesis is implicitly assumed in the method
and it would be a matter of extreme importance if it should fail, as it would have a
deliterious effect on a very large number of computations which have been carried out
using this method, not to mention the problem of a proper understanding of the physics
which would be associated with such a failure.

A quantitative way to examine this question is by an examination of the
“renormalized coupling constant,” ¢g*. First we define the estimator function,

o0, = - (%) g ) e ()
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from which the renormalized coupling constant is defined by

g = lim  fim g(K, L) (10)

It follows from equation (7) that ¢* does not diverge to infinity. If g* > 0, then the
hyperscaling relation (8) holds. If g* = 0, then hyperscaling may fail. Hara and Tasaki
[19] have proven in four dimensions that g(K, o) o [ng+|In(K, — K)|]7/2 which means
that g* = 0. However, it vanishes logarithmically, so equation (8) holds, but only weakly.
The remaining case is for d = 3, which is what we will investigate in this paper. The
renormalized coupling constant g* is estimated [39] as ¢g* = 23.73(2) for the ¢* model.
//Other references should be here?//

In his 1967 review, Fisher [20] well summed up the then current status of the
hyperscaling relations as “These relations involving the dimensionality directly seem
most open to question, ....” In a subsequent series analysis Baker [21] estimated that
2A —dv — v = —w* & —0.028. It is this type of counter hypothesis that has made this
issue so difficult to resolve. It says that perhaps g(K, co) vanishes as K — oo, but like a
very small power of (K, — K). Practically speaking, in this case, the curve should show
almost no deviation from one which tends to a constant limit until you are very close
to the critical point, and then it drops precipitously. Thus direct computation of the
9(K,00) or g(K, L) as K — K, considering the practical limitation of such calculation,
can not really demonstrate the validity of hyperscaling. In this paper, we take a two
pronged approach to the resolution of this issue. First, we compute g(K, L) directly by
a Monte Carlo procedure for a sequence of system sizes so that we keep £/ fixed. We
will argue that we have choosen a small enough value to keep systematic errors at, or
below, the 1 % level. This method will provide a direct estimate of g*, provided w* = 0
without logarithmic corrections.

The point, K = K., L = o0, is a very special point. We will show, when we are
very specific about the definition of our estimator g(K, L), that limit from the low-
temperature side,

¢ = lim lim g(K,L) =0, (11)

K—K:+0L—oo
which, if hyperscaling is valid, is not equal to g*. Thus this point is what is called a
point of non-uniform approach. We will argue that the limit,

g = lim KhH}l{ g(K7 L)7 (12)

L—oo K—K,.

is a lower bound to g* and our calculations show that g is distinctly greater than zero,
and so ¢g* > 0, which in turn imply that the hyperscaling relation (8) is valid, which was
our main point of inquiry. Note that the quantity ¢* is not the same as the renormalized
coupling constant, g* that is computed from a proper approach to the critical point

from the low-temperature side, nor is it the ratio of the corresponding, critical-point
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amplitudes G taken on the low temperature side. These latter quantities are discussed
by Zinn et al. [22].

The first clear illustration of the fact that K = K., [ = oo is a point of non-
uniform approach for g(K, L) that we know of is that given by Baker [23] from exact
calculations by the Markov property method for small two-dimensional squares with
periodic boundary conditions. We reproduce his figure here as Figure 1. In this figure
we see for K < K, that the finite size system results are approaching the infinite system
size limit in a straightforward fashion. However for K = K, the values of g(K., L) seem
instead to be approaching a limit around 3 instead of the value of ¢g* ~ 14.66 + 0.06. It
is this result which foreshadowed the present work.

From the practical point of view, another important insight was the recognition
of Baker and Erpenbeck [24] of the data collapse which results from plotting the
renormalized coupling g(K, L) versus {1, /L. (See also, Kim and Landau [25].) The same
data collapse does not occur if the plot is made of g(K, L) versus &, /L for example.
We reproduce Baker and Erpenbeck’s figure here as Figure 2. In addition these author
report a clear warning that care must be taken not to use too large a value of {1,/ L. They
demonstrate that {,/L = 0.26 is too large for accurate work, which means that some
of the prior efforts in the investigation of this area would likely suffer from significant
systematic errors. Baker [23] had observed that for the two-dimensional systems he
studied that £,/L < 1/(7 £ 1) was required for 1 % accuracy. Baker and Erpenbeck
further observed that the allowed value of £, /L for say 1 % work seems to increase
somewhat with L and concluded that for large systems the maximum allowed value of
€1,/ L must be somewhere in the range 0.11 — 0.26. They recommended that £, /L < 0.10

for work at the one-percent level.

2. Method of Calculation

For our computations, we used the Swendsen-Wang algorithm [26] for spin-updating.
This type of algorithm has two advantages over the conventional algorithm, i.e.,
reduction in the autocorrelation time, and reduction in the variances of equilibrium
distributions of relevant quantities. As has been reported by several authors [27], we
observed that the cluster algorithm with improved estimators dramatically reduces
statistical errors. It was reported [28] that cluster algorithms are not necessarily
much more efficient than conventional algorithms with multi-spin coding technique
when only the first benefit, i.e., the reduction in the correlation time, is taken into
account. We emphasize, however, that not only reduction of the correlation times but
also use of improved estimators was crucial to the present work. In fact, our preliminary
computation showed that, for the 64 cube, it was impossible to obtain results as accurate

as the ones presented in this letter by means of a conventional algorithm within a
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reasonable computational time (~ a few months) and within the given resources, at the
temperatures of the present interest. Our computations were performed on a cluster of
eight IBM RS/6000 model 590’s, SUN Sparc Stations, and ???7. //What machines
did you use?// As we will show, even for smaller lattices, it was obvious that the
cluster algorithm performs better.

It is known[35] that a Monte Carlo simulation with a cluster algorithm, such
as the one used in this paper, can be viewed as a Markov process in an extended
configuration space that is a product of the original spin configuration space and a graph
space. Various physical quantities defined in terms of spin variables have corresponding
definitions in graphical terms as well. For instance, it is well-known that we can
estimate the suseptibility, which is usually defined as the second moment of the total
magnetization, as the average volume of clusters. It is also known that the equilibrium
distributioin functions of two corresponding estimators, one in terms of spins and the
other in terms of graphs, can have very different variances although the mean values are
equal. In the above example, the graphical estimator is more advantageous because it
has a much small variance than the estimator defined on spin configurations.

Since we will deal with the renormalized coupling constant, which is a product of
several macroscopic quantities, we need to obtain the graphical representation of all
quantities involved. Otherwise the relative error associated with the quantity estimated
through the poor estimator would be much larger than the relative errors from other
sources and it would dominate the relative error in the final estimate. First we rewrite
the definition of the renormalized coupling constant (9) as

5Y@M—%M¥
& (M2)?

Therefore, we need improved estimators for £z, (M?) and (M*).

ﬂKME—( 13

A new graphical estimator for the correlation length £, is derived as follows. We

define

f(k) =4 <sin2 % + sin? % + sin® %) (1 = @) _ . (14)
with

x(k) = (| M (k)[*)/N (15)

where M (k) = 3 exp(—ik - 7)Sp. The quantity f(k) converges to {72 in the limit of
L — oo and |k| — 0 with a correction term proportional to |k[%. In order to eliminate
this correction term, we formed a linear combination of f(k) with six smallest possible
values of |k| which correspond to the nearest and the second nearest neighbors to the
origin in the reciprocal space:

£2° = [2f(Ak,0,0) +27(0, Ak, 0) +2f(0,0, Ak)
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where Ak = 27/L. This expression is correct upto the second order in 1/L and we
estimated {7, through this. Thus estimation of &g is reduced to computing (M (k)) for
several smallest reciprocal vectors..

It is well known that an improved estimator for the second moment of magnetization

is simply the average size of clusters [29], i.e.,

(M?) = <Z Vf> : (17)

Here, V. is the number of sites in a cluster c¢. For the fourth moment of magnetization,
we can derive by the same methods the corresponding estimator,

sl ) o)
We can express x(k) in a form analogous to (17).

() = (v 2) (19)
with

V() = |3 exp(ik - 7

TEc

. (20)

Thus, we have expressed all the necessary quantities in terms of improved estimators.
Our simulation consists of Ng independent runs. Each run consists of Ny sweeps
for equilibration followed by Ny(1 + n,,z) Monte Carlo sweeps for measurement.
Actual measurements are done every (1 + ng) steps and therefore the number of total
measurements performed in each run is Ny. Accordingly, the total number of Monte
Carlo sweeps performed in the whole simulation is Niota = Ns[Ng+ (ng+ 1)Nys]. (The
item marked by (® in Table I was performed in a different fashion from this. For this
simulation, the equilibration sweeps were not performed for the second or later runs,
but performed only at the beginning of the whole simulation. Therefore, Ng in Table
I for the item refers only to the first run, so the total number of Monte Carlo sweeps
here is just Ng + Ng(ng + 1)Njs.) In the conventional algorithm is it necessary to take
ng > 0. One Monte Carlo sweep includes assignments of ‘deletion’ or ‘freezing’ to all
bonds and attempts to flip all clusters. The numbers used in our computation are listed
in Table I. Since the autocorrelation time is, regardless of the definition, less than 100
[30] up to the system size of 643, the numbers Ny and Ny listed in the table are large
enough to exclude systematic error due to auto-correlation. As mentioned already, the
temperature of the simulation is chosen so that the resulting correlation length becomes

approximately 1/10 of the system size. We used the value of K, in multiplying the
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estimate g(K) by the factor (K/K_.)3/2. Adding this factor is appropreate because the
quantity g(K) has the asymptotic dependence on K such that g(K) ~ K(2/3). As
the actual value of K., we can use almost any one of very accurate estimates available
today, and the choce does not affect the present result in any significant way. For
example, Tamayo and Gupta [34] quote 0.221655, Ferrenberg and Landau [31] quote
0.2216595 + 26 and Guttmann [32] using series analysis quotes 0.221657 + 12. We used
Blote et al’s value K. = 0.2216546(10) [37].

3. Results for direct estiate of g*

In order to estimate g*, we choose for each system size L the temperature 7' so that
¢/L is fixed to be a constant R. In the present paper we take R = 10 for various
reasons mensioned in the first section. In other words, we estimated g(K, R{(K)) in
practice. In order to assure that we are controlling possible systematic errors, we have
performed exact computations on the two-cube and the three-cube at temperatures
which correspond to &, = 0.2 and 0.3 respectively. These results were compared
with series expansion results, which are very precise estimate for g(K, o0) in such a
temperature range, and we found that the two-cube result is about 2.2% below and
the three-cube one about 0.8% below the infinite systems series results. In addition, we
have compared our very long run, highly accurate Monte Carlo results for the eight-cube
(Table 1) with the series results. We find that it is about 0.2% below the unbiased Padé
approximant (See, for example, [42].) estimate. We conclude from these comparisons
that it is very likely that the systematic errors |g(K, R{(K)) — g(K, 0o)| are less than
one percent, and perhaps much better.

We have obtained results for g(K, R{(K)) for a sequence of temperatures with
R = L/¢ =~ 10 for various temperatures. The parameters used in simulations are
listed in Table 1. In Table 1, parameters used in simulations are shown.

We illustrate our results in Fig. 1. We conclude that ¢*(K.—0) = 25.0(5). It can be
seen that the central extrapolation of ref. [40], //George, please send me the latest
data for the series analysis results so I can use them in the figure.// which
tends to zero, falls well below our present results. We believe that this method does
not properly account for the leading subdominate behavior. In [41] it was seen that ¢g*
lies above the limit of g(K.,L) as L — oo in the two-dimensional Ising model. In [34]
using the histogram method, it was found that the value of g(K, L) falls very rapidly
to 6-7 as K — K,.. Combining these results with ours, we conclude that the value of
g* is greater than zero and so hyperscaling holds for the three-dimensional Ising model.
Finally, in [36], § is estimated as § = 4.9(1).

//What do you think about the following comment?// We here conjecture
that the g(K, L) is a decreasing function of K when L is fixed. This conjecture is



L K Ns Ng Nu  nr Niotal £ A
8 | 0.14905 7 1,000 1x107 0 7.0 x 107 0.80005(2) 0.011

16 | 0.1916 35 2,000 2x10° 0 7.1x 105 1.6024(2) 0.11
32 ] 0.2108 35 2,000 2x10° 0 7.1 x 10° 3.2300( 5) 0.15
64 | 0.2180 28 1,000 1x10° 0 2.8 x 10° 6.5843(20) 0.33
96 | 0.2197 41 1,000 7x10* 0 4.5x10° 9.8309(31) 0.32

(@ 16 | 0.1916 40 70 2x10* 6 5.6 x 10° 1.6070(39) 1.8

®) 16 | 0.1916 40 2,000 4x10° 0 24 x10° 1.6033(14) 0.7

Table 1. The parameters used in the computation and the results. The value

K, = 0.2216546 given in [Bloete] was used. All the results presented are obtained
through the cluster algorithm except for (a). The last column A is the estimated
statistical error in (K/K,.)*/?g(K,L). The rows (a) and (b) are included only for

comparison of the conventional algorithm (a) and the cluster algorithm (b).

L | (M) (M*) —3(M?)* (E*) —(E)> g (K/K.)*g
8| 4.20700(7) x10° —4.113(2) x 10 4.1554(6) 45.38(2) 25.02(1)
16 | 1.2776(2) x10'  —2.143(9) x 10* 6.092(4) 31.9(1)  25.6(1)
32 | 4.5681(8) x10'  —1.92(1) x 106  9.224(7) 27.3(2)  25.4(2)
64 | 1.7752(6) x10*> —2.29(3) x 10®  13.55(2) 25.5(3)  24.9(3)
96 | 3.860(1) x10*  —3.61(5) x 10°  16.45(2) 25.5(3)  25.2(3)

Table 2. The estimates for various quantities.

suggested by Fig. 77. (Note that £, /L increases as K increases and that if we exclude
the factor (K/K.)%/? the decreasing behavior would be even more enhanced.) Especially,
for K smaller than K,

QD) > lm g(K,L) (21)
By taking the limit of L — oo of both sides,
; i
lim g(K,L) = g". (22)
Then, by taking the limit of K — K, — 0 of both sides, we have
g >g. (23)

Thus, g' gives a lower bound for g*. Therefore, with the above conjecture and the
finite estimates of g, we expect that g* is finite and that the hyper-scaling holds for
the three-dimensional Ising model. Our finite estimate for ¢g* is further confirmation of
this result although it is larger than the field theoretic esitimated quoted above. We
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Figure 1. The renormalized coupling constant g(K, L) times (K/K.)%/? vs. K/K..
The solid circles correspond to the simulations for L = 8,16,32,64 and 96, from the
left to the right, respectively. The curve is a mere guide line to eyes. The error bars
represents one standard deviation. The series analysis results are from the same type
of analysis as in the work of [BK81]. Cross comparison with other analyses shows that
realistic errors on this series extrapolation are sufficiently large so as not to exclude
our current Monte Carlo results. The field-theoretic renormalization group value is

indicated by an arrow in the figure.

remind the reader of the caution of Nickel [38] who found non-analytic corrections to the
Callan-Symanzik beta function §(g) in one dimension, and suggested that there may
also be such in other dimensions which would adversely effect the quoted error estimates
for the field theory results.

4. Conclusion

We have estimated ¢*(K) which converges to the renormalized coupling constant as
T — T.+ 0 for various systems sizes upto L = 96. We found that ¢*(K) does not
decreases down to zero as the critical temperature is approached as was conjectured
from the previous result on g'. The extrapolated value is g*(K,. — 0) = 25.0(5). We
take this as a firm evidence for the validity of the hyperscaling relation in the three-
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dimensional Ising model.
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Figure captions

A plot of Kg(K, L)/ K. versus K/ K, for the two-dimensional Ising model. The unlabeled
curve is the series result for an infinite system, and the labels L indicate the curves for
L x L square lattices with periodic boundary conditions. A plot of g(K, L)(K/K_)3/? for
the three dimensional Ising model for the simple cubic lattice with periodic boundary
conditions. The cases shown are for systems of L X L X L spins, and the plot is versus
&r/L. The point & = 0 is common for all values of L = N and is exact.



