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Abstract

The derivation of equations of state for fluid phases of a partially ionized
gas or plasma is addressed from a fundamental point of view. First, a cubic
cellular model and then a spherical cellular model is deduced for the hot
curve limit (or ideal Fermi gas). Next the Coulomb interactions are added to
the spherical model for general ionic charge Z. A numerical example of the
theory for the case of hydrogen is reported and it reduces in various limits of
temperature and density to the expected behavior. It displays an electron,

localization-delocalization phase transition of the normal liquid-gas character.
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I. INTRODUCTION AND SUMMARY

The theory of crystalline solids is currently very well developed and relies on Bloch’s
theorem to provide the structure of the necessary quantum mechanical wave functions.
This theory has been successfully investigated in great detail by numerous workers. The
properties of fluids and amorphous solids, considered at the correspoding level of their
basic constituents, i.e., electrons and ions, has received very much less attention. It is the
purpose of this paper to begin an effort to construct such a fundamental investigation of
the problem of the partially ionized gas. Needless to say there is no clear dividing line
between partially ionized, and fully ionized, nor for that matter, non-ionized. The resulting
model has been evaluated in the case of hydrogen, and the results have all the expected
physical properties. The limiting pressure is correct for high temperature. The model shows
the expected complete ionization phenomena for fixed temperature in the dilute limit. As
expected at medium to high densities, the model predicts a “cold curve” where the pressure is
very insensitive to the temperature. (The compression pressure dominates.) It also predicts
a localization-delocalization phase transition, although critical parameters are not yet in
accord with experimental results.

Perhaps the theories in most general use today are the Thomas-Fermi [1-6] and Thomas-
Fermi-Dirac theories [7,8]. These theories permit the computation of the equations of state
over wide regions of temperature and volume, however they are basically semi-classical in
nature.

There are a number of other approaches which have been employed, many of which are
quite good in certain regions of the phase diagram. There is the classical theory of ionic
fluids of Debye-Hiickel [9]. A more modern version of it is the restricted primitive model
[10,11]. In this model there is a fifty-fifty mixture of hard spheres with charges +¢ and —g,
which move in a dielectric medium. This model is suitable for Monte Carlo simulations and
for mean-field approximations. It produces results which compare informatively [12] with

experimental data. The hard-sphere reference system for the neutral components has also



been used [13,14]. The thermodynamic perturbation theory approach in its classical [15,16]
and quantum [17,18] forms has been used. In addition there is the perturbation expansion
in the electric charge [19]. A further approach which has been very thoroughly worked out is
to use an empirical interatom potential. The Lenard-Jones 6-12 potential (sometimes cut off
at larger distances) is a popular choice. Rather full results have been obtained here for the
equation of state [20—22]. There is the method of Bunker et al. [23] who is concerned with
the metalization of hydrogen. It uses fluid variational theory, a modified hyper-netted chain
approach, and empirical species-species potentials. A description of a number of additional
approaches may be found in the book Kraeft et al. [24], plus some subsequent work which
takes into account some of the many-body effects (dynamical screening, self energy, and
polarization forces) [25,26].

An approach somewhat similar to the present approach is the confined atom method
[27,28]. It differs from our current method, and my report of some preliminary results from
a precursor to the present method [29], by requiring for all angular momentum states that
the wave function vanish at the cell boundaries. It is well known that for these boundary
conditions that the lowest eigenvalue is never less than that for the atom, whereas in the
case of the present approach the lowest eigenvalue may well be lower [30] in a manner similar
to the so called “metallic bond.” A first principles type of approach is the quantum Monte
Carlo method which has been applied to a system of 32 electrons and 32 protons, with the
observation of phase transition [31].

Our alternate approach is to start from the ideal electron gas plus a gas of ions, all of
which are non-interacting. This system corresponds to a state of complete ionization. It
represents the correct description when the electric charge e is set to zero. The deviations
from complete ionization by means of many-body perturbation theory in the electric charge
(or more accurately in terms of e?) have been studied for some time. The leading correction
is the exchange correction [7] as all the direct terms cancel each other for the case of charge
neutrality. The next correction is the Debye-Hiickel term which is of order e3 and results

from the sum of an infinite series of terms of order e* [32]. The term of order e*, the
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second exchange correction, was added by Baker and Johnson [19]. This approach is plainly
completely correct within its region of validity. The requirement for its validity is the
smallness of the Coulomb interaction relative to the thermal energy. This approach is quite
good for large temperatures and/or high densities.

In this paper we apply a number of the insights gained by the study of crystalline solids
to an effort to construct a theory of quantum fluid behavior. The cellular model is an old
idea [33] in that theory. For crystals, the cells can be chosen so that space is completely
filled, opposite sides have values of the wave function related by the lattice periodicity.
I will apply the idea of a cellular model to the case of a fluid. For a fluid, there is no
preferred direction, so that one is force to choose a spherical cell. Since one can not fill
space with spheres of uniform diameter, as one could with Wigner-Seitz cells, this choice is
necessarily an approximate one. Various many-body effects are added to the spherical cell
model through the boundary conditions, an effective mass, and changes to the potential.

In the second section of this paper I give the derivation of the Schrodinger equation for
our case. | also outline the necessary thermodynamics and statistical mechanics to compute
the pressure, internal energy, etc. for our case. Some care must be taken here as our case is
a more general one than is often seen.

In the third section, I show how to construct a cellular model of the ideal Fermi gas.
Here cubic cells are used and the model is in principle exact for this case. Some discussion
is given regarding the various integrals over the Brillouin zone which need to be evaluated.
This model is evaluated numerically. I show how to obtain the fugacity in this case. The
results are found to be in agreement with the exact ones, as expected.

In the fourth section I construct a spherical cellular model of the ideal Fermi gas. 1
discuss the question of the selection of appropriate boundary conditions. In addition to
the problem of spheres not filling space, there is an additional problem which arises. We
resolve the wave function in the usual spherical coordinates, and then we let [ denote the
angular momentum index and A the radial wave function index. In the Hamiltonian there

is a term k - 6, where £ is a vector in the Brillioun zone. This term unfortunately couples
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components with all values of A to the components with adjacent values of [. This problem
greatly complicates the numerical work. I have used the observation of the degeneracy and
near degeneracy of the eigenvalues to give a prescription to reduce this numerical problem
to a more tractable level. As a result, the pressure as computed by this method is accurate
to within —2.5 to +4.9 percent.

In the fifth section, we come to the heart of the paper. Here I show how to construct a
spherical cellular model of an ion-electron gas. I begin with a simplified discussion of the
cases of hydrogen. I start with the Heitler-London atom. Drawing on our knowledge of
the high-temperature limit, the electron-ion, electron-electron, and ion-ion interactions are
adjusted to lead to correct results in that case. A modification of the various potentials is
used to this end. Next the exchange correction is considered and an effective mass term
is introduced as well as a further potential modification. Again our knowledge of the high
temperature limit is used to guide the construction of these modification. Finally a correction
of a semi-classical nature is made to take account of the fact that the electron-electron and
ion-ion repulsions forces the electrons apart and so reduces the energies which depend on
these interactions. These resulting equations are then generalized to general nuclear charge
Z together with Z surrounding electrons.

In the last section, I compute the results of the spherical cellular model for the case of

hydrogen. The results are as described above.

II. GENERAL FORMALISM FOR THE CELLULAR MODEL OF A GAS

Our work here will be based on the independent electron approximation, modified as
appropriate to included further important effects. That approximation is certainly generally
valid for an ideal Fermi gas, and we also expect it to be very good for the application to
extremely low density atomic hydrogen. In the absence of other, more reliable, pictures we
shall be guided here by the way in which this approximation is structured for a crystal,

while keeping in mind that what we are doing should work for an ideal Fermi gas. From a



fundamental point of view, it is impossible to describe the behavior of the electrons correctly
in terms of the solutions of a one electron Schrodinger equation, no matter how cleverly the
potential, etc. is chosen. Never-the-less, the independent electron approximation has had
very considerable success in the theory of crystalline solids. If we make this approximation,
then we expect to represent the crystal by a periodic lattice of ions which leads in turn
to a periodic potential. The solutions for the single electron wave functions in this case
can by Bloch’s theorem be represented in terms of the wave function in a single lattice cell
and a wave vector in the first Brillouin zone. The difficulty in determining the appropriate
potential within the cell is well known. In the case of a fluid it may seem jarring, to those who
are used to thinking of a fluid as a many body system in continuous space, to discretize the
system by dividing it up into cells. However, following the Wigner-Seitz construction, if we
take a given configuration of ions and put a surface half way between each ion and its nearest
neighbor ions, we will divide the system into cells of various sizes and shapes with one ion
in the ‘center’ of each cell. As the ions are much heavier than the electrons, we expect the
electrons to relax into configurations in these cells on a time scale shorter than that of the
movement of the ions. In the independent electron approximation, we generate the energy
states of the system by the use of the eigenfunctions of the single electron interacting via an
appropriate potential in each of these cells, just as was done in the crystal case. Rather that
treat such an ensemble of different cell types, in this effort we replace them by a single cell
whose volume is equal to the average volume. To the extent that volume fluctuations are
important, they are ignored here. This uniformization of cell size allows us, as in the crystal
case, reasonably to suppose that we can describe the system in terms of the eigenvalues
of the solution within a single cell and the wave vectors of the first Brillouin zone. The
eigenspectrum of the individual cell, together with the spread in these energy levels due the
the wave vectors just mentioned, models (in the independent electron approximation) the
energy eigenspectrum of the whole system. We will see in the next section that this method
is exactly correct for a cubic cell model of the ideal gas. Further, we know from tight-binding

approximation theory that, at least for the low-lying levels, it is very accurate in the cold
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dilute limit of an interacting Coulomb system. That the model behaves correctly in these
two extremes is a necessary, but not a sufficient condition for its over all validity. Our choice
of what seems to be a reasonable intra-cellular potential is addressed in section V. The issue
of the screening of the electric charges is handled in this model by the enforced neutrality
of each cell. If the electronic state is spherically symmetric, then the force outside the cell
is zero. Otherwise, higher-order moment forces can occur. The cell-cell interaction forces
are modeled here, as we will see later, by means of the boundary conditions. As explained
in section V this model, in some sense, replaces the long-range part of the potential by a
nearest-neighbor, cell-cell interaction.

The first step is to divide the system up into Wigner-Seitz cells, with one atom per cell.
We will not specify the underlying lattice now, but will choose it later to fit our convenience.
We will however insist that the Wigner-Seitz cells chosen be inversion invariant. Bloch’s
theorem on crystal lattices [6] says that any solution for the “one-electron wave function” is
of the form ¢(7) = eiE'FQS(F), where ¢(7) has the periodicity of the lattice. By using all the k
which lie in the first Brillouin zone, one can construct the entire band corresponding to that
state. By the general theory the combination of all the reciprocal lattice vectors plus those
in the first Brillouin zone covers the entire /;—space. We will see later that our procedures
will allow us to construct a correct model of an ideal gas. Although this procedure is more
complex than the standard one, it can be generalized to the non-ideal case more readily. The
point is not to construct a band theory of a gas, but rather to use this method to include
the Pauli exclusion principle effects between electrons on different atoms. We add that to
the extent that shape fluctuations are important, they are ignored in this procedure. Here

the boundary conditions are



where 7i(7) is the outward normal vector to the surface of the cell and R is a lattice vector.
These conditions provide for the continuity of the wave function and its derivative at the
surface of the cell. From our point of view, every calculation we make must be reduced to a
single cell and the macroscopic effects are reflected solely through the boundary conditions,
and the effective mass and potential modifications.

The next step is to substitute ek Tér(7) into the Schrodinger equation.

— P (7) — ;k Vér(7) — —mvzqu(f) + V(7)o (7) = Ex(k)dr(7). (2.3)

Of course the issue of the best choice of V() is an important one, and we shall return to
this topic in section V. We will however use an inversion invariant potential. Notice that
the left-hand side of (2.3) is Hermitian, so E,\(E) is necessarily real. Note also that since the
Wigner-Seitz cell is inversion invariant and (2.3) is invariant under inversion and complex
conjugation, it must be that if ¢,(7) is an eigenfunction, then so too is ¢}(—7). If the
eigenvalue is non-degenerate then these two quantities must be a constant multiple of each
other.

Next we need the pressure of an atom enclosed in a cell. We will suppose that the nucleus
is fixed in the center of the cell. The most straightforward thing to compute is the grand
canonical partition function which is normally given as [34]

QQ,T) = ) exp[Nu(Q,T)/(kT)] Qn(Q,T) = Z > exp[(QT) = ¢)n;/(kT)]

N=0 N=0 {n;}
= H {1+ exp [(1(Q,T) — ¢;)/(KT)]}, (2.4)

for the case of Fermi statistics. By taking the partial derivative of log Q with respect to the

parameter p, we can obtain in the usual manner,

1
expl(e; — p)/KT] + 1

N = Z

(2.5)

where here N = 1, the average number of occupied states of the system, which fixes p, as

a function of the temperature and the volume. Since for the canonical partition function



Qn(Q,T), as usual we have kT'logQny = —A(Q,T), where A(Q,T) is the Helmholtz free
energy, we deduce directly for (2.4) in the usual way by considering only the term in the

sum corresponding to N,

AQ,T) = Nu(Q,T) — kT 3 Jlog {1+ exp [(u(Q, T) — )/ (KT)]} (2.6)

J

The energy is given from the Helmholtz free energy by the thermodynamic relation,

O¢;

0A ¢ T 3¢
U=A—-T = = Q ) 2.7
ar |, ; exp[(e; — p)/kT] + 1 (2.7)

We remark that normally, d¢;/0T|, = 0 and so is not included in the text book presenta-
tions. However, in our case, our treatment of the many-body effects induces a temperature
dependence in energy eigenvalues in the cellular equations. It may at first sight seem sur-
prising that although we start with a system in which the potentials in the Hamiltonian are
independent of density and temperature that we could end up with this sort of dependence
in the cellular equations. This sort of dependence occurs naturally when one goes beyond the
independent electron approximation. As an example, consider the exchange energy which
arises due to the anti-symmetry of the electron wave function. In the text book derivation
[35] of this electron-electron interaction term for free electrons at zero temperature the Fermi
momentum enters directly in the effective interaction term. Since the Fermi momentum is
proportional to the cube root of the density, we get a direct dependence on the density in
the effective interaction term. As the temperature increases, the distribution of the electron
states no longer has a sharp cut-off at the Fermi surface, but is smeared out there. This
difference in the energy distribution of the electrons will likewise cause a dependence of the
effective interaction on the temperature as well.

The pressure is also given from the Helmholtz free energy by the thermodynamic relation

o oa
p=- g—éTZXk:expﬁzT—u)/al?T]T—l-l _Ng—gT’
ey,
oQ
- Ek: exp](ex, — #)?kT] +1 (28)



It will be useful to rewrite (2.8) in terms of the “radius” y, or typical linear dimension of

the cell as,
8€k

/r -
1 b@rbT

M= 3 ol m/FT T

(2.9)

A remark at this point is worthwhile. It is common to see in text books the expression
Pl = kT log Q. This result is only valid in the case where the Gibbs free energy G = Ny,

as is usually so and is certainly true for the ideal Fermi gas. In general,

G:A—Q%%T:NMQT) (2.10)
T Y log {1+ exp (19 T) = )T} 3 ¥ o

The last two terms cancel each other for the idea gas case and correspond to the two forms
of f% given in (3.2) given below. For reference, the entropy S can be obtained from (2.6),
(2.7) and the thermodynamic relation A = U — T'S.

Thus, in general, the computation of the pressure, etc., is reduced to computations
within a single cell. When we observe that for an ideal gas every eigenvalue is of the form

h?k? [ (2mr}), with k independent of 74, then for the ideal Fermi gas,

8ej

Ty —
87‘5

The substitution of this result into (2.9) yields the well known result,

= —2;, (2.11)

2
pQ = 2U. (2.12)

The boundary conditions (2.1) and (2.2) are known to be sufficient to produce a discrete set
of states for each value of k. Thus in principle what one needs to do is to compute these
quantities for every k in the first Brillouin zone, then to integrate over the zone and sum
over the discrete states as indicated in (2.5) for various u’s, in order to determine 4 as a
function of r, and the temperature T'. From this determination one can then substitute it in
(2.7), et seq. to determine the various thermodynamic quantities as predicted by our cellular

model. The computation of the necessary derivatives is discussed in Appendix A.
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IT1. CUBIC CELLULAR MODEL FOR AN IDEAL FERMI GAS

The standard formulas [34] for the ideal Fermi gas (of chargeless electrons) are,

N h2 %
C_ﬁ<27rka) = £

where ( is the de Broglie density which measures the importance of quantum effects, N is

Oozy2e Ydy

f/ 1+ze v’ (8:1)

m|w

the number of electrons, (2 is the volume, and m is the electron mass and z = exp(p/kT) in

the notation of (2.5). The pressure equation is

pQ fg (Z)

2 o<y B 4 o0 zy%e_y dy
== [ yrlog(l Y) dy = 2
fye) = = [ yilog(i ke dy= 5o [T ESL (32)

where the second form of f% (z) follows from the first through an integration by parts or vice

ot

versa. It is instructive to re-express these equations in cellular form. Let us choose cubes
of edge a such that a® = /N so that on average there is one electron per cell. Then the
reciprocal lattice is also cubic and the edge of a primitive cell is 27/a. If we make the change

of variables, y = h*k?/(2mkT) then (3.1) can be rewritten as,

h2k? -
xPp (_ 2ka> dk

Rk
1 + zexp ( 2ka>

(3.3)

By dividing the range of integration according to primitive cells of the reciprocal lattice we

get for (3.3),

—

=2 Y 28 ()L v 09

- 2

where the steps in the j sums are unity. The factor of 2 is a reflection of the two spin states

of the electron. The corresponding formula for the pressure is, by (3.2),

P @+%)dg
CREIDN N U M i
- 2 —m/a

RS on 2w )\
1+Z_le’q)lkaT <k+7ﬁj)]

(3.5)
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We are now in a position to compare these exact results for the ideal gas with the results
of the cellular model described in the previous section. First, if k = 0, then (7)) = exp(i5-7)
satisfies (2.3) with E(0) = A*s%/(2m) and if each component of § is an integral multiple of
27 /a, where a is again the cell edge, the solutions also satisfy the boundary conditions. When
k # 0 then it is easy to verify that ¢(7) = exp(i5 - 7) still satisfies (2.3) and the boundary
conditions with the same restrictions on §. However, now F (/2) = R%(5 + E)z /(2m). When
this is substituted in (2.7), (2.12) gives us exactly (3.5). Thus the cubic cell model is exact
for the ideal gas. It is not difficult to persuade one’s self that the same is true for any Bravias
lattice cell model, as it just amounts to a reorganization of the intergals.

It is of interest to investigate what is involved in the numerical evaluation of the properties
of the ideal Fermi gas by this method, as later on we will be interested in the accuracy of the
spherical approximation to the cell model and in the calculation of models with Coulomb
forces added. As the integrals are symmetric in the 8-octants, we can reduce the integration
to a single octant. To do so, it is convenient to shift the Brillouin zone to 0 < k; < 27/q;

then we don’t divide any Brillouin zones in the process. Hence (3.4) becomes,

400 400 +oo di
A [t oxp [7(20)F (R 1 — /(1)) 39

and (3.5) becomes

wir= 5O LS [ [ B 60

J1=032=053=0 1+ eXp 2() (/:5 + -7_)d - /‘/(kT)}

The problem here is to do the integrals over £ and then do the sums over ;. Because of the
exponential these sums cutoff quite rapidly once the eigenvalues exceed the free energy pu.
We have used the Euler-Maclaurin sum formula, because it is quite efficient for Gaussian

type integrals. Specifically, with remainder, it is,

| f()da =
%[f(0)+f(m)]+:§f Z _[ (- l(m)—f(z’"‘”(O)]—f(Q")(Gnm)(ffL’)‘!, (3.8)

where the B, are the Bernoulli numbers,
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1 1 1 5)

1
By=-, By=——, Bg=—, Bs=——, By=—, ... .
2 67 4 6 8 307 10 667 (39)

We have found that dividing the range of each rectangular component of & in /7 (2 )% +1
intervals with no Bernoulli number corrections was sufficient to give a maximum deviation

of 0.2% for the pressure from the representation of Baker and Johnson [36],

P 0 = 1 4 0.61094880¢ + 0.12660436¢2 + 0.0091177644¢3] 5
NkT IS 1 + 0.080618739¢ ’

(3.10)

which is accurate to 0.1%. A binary search method was used to solve (3.6) for . The
starting value of p used was computed from the representation given by Baker and Johnson.
The left hand side was [19] reproduced to at least on part in 10'°. We checked over a range
of 7x107* < ¢ < 7 x 10%. Note is taken that the Bernoulli number corrections all vanish at
the boundary where a component of 7'is zero as this is an even function in £, and the others
cancel in pairs, except at the large cutoff in 7 where they are negligible anyway. Thus this
particular case is not a good guide in general to the expected number of Bernoulli number

corrections for this accuracy.

IV. SPHERICAL CELLULAR MODEL FOR AN IDEAL FERMI GAS

As background to the spherical cellular model, let us first consider the body-centered
cubic or the face-centered cubic lattice. These lattices are reciprocals of each other as is
very well known. Their primitive cells are more nearly spherical that for the simple cubic
lattice. For the ideal Fermi gas problem we can again choose the single electron eigenfunction
to be of the form exp(ip'- 7) where § lies on the reciprocal lattice and couple the sum over
the reciprocal lattice with an intergal over the first Brillouin zone. The same structure as
explained above for the simple cubic lattice continues to work here and reproduces the ideal
Fermi gas results in the same way. If for example we take § = ngl where 51 is one of the
basic reciprocal lattice vectors, then we can write the eigenfunction in terms of the spherical

basis system as
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e?" =3 "(21 + 1)i' P (cos ,,) i (rp), (4.1)
1=0

where the P, (z) are the Legendre polynomials and the j; (z) are the spherical Bessel func-
tions. If we choose the length of 7 to be 7/ |51| then we can, if we wish, select equivalent

boundary conditions for a sphere of that radius to be

o0

ein‘ircosGrp — Z(Ql + 1)’LZ-PI (COS Brp)jl (TL?T), (42)
=0

on its surface, and we will have defined this eigenfunction in the sphere. It in turn can be
decomposed into its even and odd parts under inversion. On the surface of this sphere they

are
¢e = cos(nmcosby,), ¢, =1isin(nmcosb,,). (4.3)

In order to insure periodicity in the direction 51 we note ¢, = 0 automatically here, and by
differentiation, we find the by 6@56 = 0 here as well. In the tangent plane perpendicular to 51,
we have by the usual theory of lattices, two of the basic vectors for the lattice. In this whole
plane, the same two boundary conditions ¢, = 0, l_;l - ¢. = 0 hold as mentioned above for
the poles of the sphere. This set of boundary conditions reflects the usual three-dimensional
periodicity of a space lattice. In other directions we see the oscillating boundary conditions
describe by (4.2-3) above, which of course reflect the existence of special directions for the
space lattice.

These boundary conditions would be rather hard to use in the spherical coordinate
framework if we didn’t already know the result, as they mix a potentially large number
of different [ states and greatly increase the solution effort. For the ideal gas cases, of
course, there is no problem as we have the solution already, but a problem would arise if
we were to try to add a spherically symmetric potential. Besides this sort of boundary
conditions violates the spirit of the spherical cellular model as it has preferred directions.
The spherical cellular model is necessarily an approximation as one can not fill space with
spheres of constant diameter and the whole Bravias lattice structure which works so neatly

for actual space lattices is inapplicable for spherical cells.
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Alternatively we can start with equation (2.3) and impose the boundary conditions (2.1)-
(2.2) for periodicity in all directions at every point on the surface of the spherical cell of

radius 7. These requirements lead to the conditions,

i - 6qbcvcn = 07 ¢odd =0 (44)

on the surface of the spherical cell. The first Brillouin zone is taken to be |Ig| < kg =
(97/2)13/ry. In the case k= 0, we can construct a basis set of solutions of (2.3) in the
spherical cell with these boundary conditions. They imply, in short that the radial derivative
of the part which is even under inversion must vanish at the surface and the value of the

odd part must vanish on the surface of the cell. Specifically, the basis set is
|l,m,)\> :Y}m(e,qﬁ)Nl,\jI(pl,\r), m:—l,—l—l—l,...,l, l:0,1,..., A= 1,2,..., (45)

where Y;,,(6,¢) are the usual normalized spherical harmonics, and are, in terms of the

associated Legendre Polynomials, P/™(cos )

(21 + 1)(1 — |m|
an(l + [m))!

1/2
Yim(6, ¢) = < ”) P (cos B)e™?. (4.6)

The quantities p; )\ are determined by the boundary conditions through the requirements,

Jilpiare) =0, [odd,
(4.7)
Ji(piary) =0, [ even.
Finally the NN are given by
Th i ) ' '
1= NfA/O Jzz(pz,v)ﬂ dr = %ri:’ [Jzz(pl,wb) — ]1_1(pl7)\7’b)]l+1(pl7)\rb)] me (4.8)
where we take j_1(z) = —ng(z) = cosz/x. This set of basis functions is a complete or-

thonormal set. It is not the only possible such set, but it is appropriate to our present
needs.

The next step is to resolve the operator H' = —(ii%/m)k - V in this basis. Since the
spherical cell has no preferred direction, we have, for convenience, taken k to be parallel

to the z-axis. It is to be noticed that the various m states are not mixed by this operator

15



because it commutes with the z-component of angular momentum. This resolution requires

some straightforward, but tedious computation.

l >. . .
H'|l,m, \) = =%k (2010l 2 imd[Lomid pm, () (padi(piar) — Lii(piar) )

+ Em P () (padi(poar) + Bjipuar) ) | Nia, (4.9)

Thus, the results are (I',m/, N'|H'|l,m, A) = 0 unless |I' — | = 1. The non-zero elements are
(1 —1,m', XN|H'|l,m,\) =
—ih2kpy » (lzﬁinf)i O m [ 2p1, a1 (Pr,aT0) <jl—1(pll,A’Tb) )E] , for [ odd (4.10)

m Tb(PlZ,A*P,z_LA/)UlA(Pl,,\Tb)| =51 (P11 a178)

M

—ih2kpy s [ 12—m?
m 4]2—1

2p;_q arJi—1(pr,amy
Smtm s ( ~,), |, for [ even
ry(PL A =Py 3 (Z0(PraTe) 5y (Prams)) 2

and
I+ 1,m',\XN|H'|l,m,\) =
1
—ih2kpy A ((H—l)?fmz)% 5 l 2p1,3J1 44 (P1,ATE) ( Ji+1 (Prya ar) )2] for | odd (4.11)

m 4(1+1)2-1 Tb(Plzﬂ,\*plz+1’/\l)|jl+1(Pl,A"'b)| —Jth 1 (Prg1 ar7e)
1 .
—ih2kpy <(l+1)2’m2)§ Ot = 2Prg1 i (Prarn) for [ even
2_ m/, i . 1
m 4(+1)*~1 Tb(Plz,/\_p12+1,A/)(—]l(Pl,ATb)h”(Pl,ATb))2

As the operator H' is Hermitian, but doesn’t look so in this mode of expression, we

remark that its Hermiticity can be explicitly verified by use of the Bessel function identities,

PiJi+1 (P v T0) S 1 (PiaTs) = Divaydie1 (Piars) ji(pisanvrs), [ odd,

Pt v 1 (Piars) ] (P e) = Piadiv1(Piare)si(pis1 ), | even, (4.12)

where use has been made of the standard Bessel function identities and also in particular,
the boundary conditions (4.7). It is to be noticed that j;'(p; xr) only appears in (4.10) and
(4.11) for even [. In this case, as jj(pars) = 0, the j” terms can be replaced, using the

spherical Bessel function equation,

it ;) Ji(piams), (4.13)

jl”(_pl,/\/rb) = - <]- - 2
AT

which eases the problem of the evaluation of the expressions.
In the case where pj11x = p;) the [] terms in (4.10) and (4.11) considerable simplify.

They are
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pJQ,ATb
where for [ even, L = [ and for [ odd, L = [—1 for (4.10) and L = [+1 for (4.11) respectively.
One might think that the occurrence of degeneracy, other than between the states with
different z-components of angular momentum, which do not mix in this case, would be
accidental and rare. However, degeneracy and near degeneracy, is quite common in this
basis. First, since j{(z) = —j1(z), the m = 0 component of the [ = 1 member of our basis
states is always exactly degenerate with the corresponding [ = 0 state. In general, for the

higher order zeros, we have the asymptotic expansions [37]. The sth zero of j/(z) is

24+ 12 +7
RS

(1) =p 55 0B, B=mn(s+3l—13), (4.15)
and the sth zero of j;(2) is
2 =p- L0, p=als+ ) (4.16)

By way of comparison we consider the results from (4.15) for [ = 2+ 1 and from (4.16) for
| = 2u. In this case § = m(s + p) for both cases so to leading order they are degenerate.

Taking the difference we get

%@My—z@u+1):2<ﬁ%i)+wXﬁ*L (4.17)

So for large s we get very near degeneracy. For smaller values of s, except for the [ = 0,1
correspondence, the degeneracy is not too bad but not so close. We report some of the
values in Table I [38].

If there is a near degeneracy so that for some A" and X', p; v & pj11 x then, without the
compensating vanishing or near vanishing of pl% \i —D? 1,y the vanishing, or near vanishing of
the numerators in (4.10) or (4.11) causes the corresponding matrix element of H' to vanish or
nearly vanish. With this observation as guidance, we will now divide the Hamiltonian matrix
into blocks characterized by a value of m, the z-component of the angular momentum, and

all those states which are degenerate in leading order as expressed in (4.14) and (4.15). The
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largest block will be for the m = 0 case and the lowest energy state of the largest value of [
retained.

It is to be noticed that the matrix elements of H' depend on m. This dependence adds
greatly to the length and complexity of the computation. For numerical expediency, within
each block of degenerate, or nearly degenerate states, we replace the resulting eigenvalues
with the eigenvalue plus or minus the root mean square deviation over its block of the
eigenvalues due to H'. These latter values are easily computed by taking the trace of
(Ho+ H')?* for that block. The exception is for the lowest [ = 0 state which is not degenerate
nor nearly degenerate with any other state, and so no change is made here on account of
H'. This treatment agrees with that of Bardeen [39] for the ground state case.

2

The necessary partial traces to be taken are those of (H') One convenient way

to get them is to start from the result (4.9), and use the completeness formula,
(Lm, N(H')? L, m, A) = S s (Lmy NH m! XU m!, N H'|1,m, X). These results, to-
gether with the completeness of the ¢;11 x(r) over all A for 0 < r < 7}, allow us to deduce,

by direct computation, the conclusion,

RPk?\ (202 +20 — 1 —2m? I(I+1) —3m?
Lm, AM(HD? |, m, \) = 4 S, 4.18
Qo (Pl = () (BB SIS )
where
h2 h2
Tiy = —%(l,m,MVzH,m, A), Sia= %rbmm(rb)ﬁ, (4.19)

and use was made of our boundary conditions, which imply that ¢; x(r4)¢j \(rs) = 0 for all
values of [. Note that S;y = 0 for [ odd. The sum of the absolute squares over the 2/ + 1

states of the m is, by direct computation from (4.18)

> Gommy =4 (55 (2 1, 120

— 2m
o

where the sum over m of the S; ) term vanishes here. The (2/ 4+ 1)/3 factor has the inter-
pretation that it is the total number of states, divided by the number of spatial dimensions,

as only one direction is singled out by k. The result in (4.20) corresponds to averaging over
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all the directions of k as the sum over the m-states is independent of the original direction
chosen for E, and so is in line with the concept of the spherical cell.

The next step is to sum over the [ values of the degenerate or nearly degenerate block.
For the wth excited state of [ = 0 this sum would be up to L which is the lesser of the
maximum [ value considered or 2w. Thus the root mean square value, A, (k) for this block

would be given in units of the Brillouin energy by,

k2, ? 4 A2\ L=t (2041
A(k)| = “ 2\, . 4.21
[ 5 Dol )] e ( )Z ( 3 ) Lw-[(141)/2] (4.21)

2m —o

In a manner similar to (3.6) and (3.7) we obtain the expressions which determine the

parameter p and the pressure. The parameter p is given by the solution of

= 3?(21 +1) i /Oldﬁi 52{

1

1+ exp ((1.5ﬁ§)%(eln + K2 4+ KA 041)/2]) — u/kT)
1

+ 2
1+ exp ((1.5ﬁC)E(eln + K2 — kAnq[041)/2]) — /kT) }

(4.22)

where we use the notation e;,, = pj,/k% and where 3 = 2 x 3 x % and the 2 is for the two
electron states, the 3 normalizes the intergal, and the % compensates for the two £A terms.

For the pressure, remembering the factor of 2 s given by (2.12), we get,
PQ 2
2(1.5y/7C)3 S (2 +1) / dis K2 X

{ el,n + K: + K:An—l— [+1)/2] (kB)
1+ exp ((1.5ﬁ() (€1 + K2 + KApy11+1)/2) — ,u/kT)

+ €] n + K: - 'K‘:An—l— (1+1)/2] (k:B) } (423)
1+ exp ((1 5yTC)3 (erm + K2 — KA, 1111 2) — u/kT)
This form is analogous to the second form for f; in (3.2).
A form analogous to the first form for f; in (3.2) is
Y
NkT
oo oo 1 5
3 (20+1)> /0 dk ﬁz{log [1 + exp (u/kT — (1.5y/7() 3 (e1, + &% + mAz,n)”
=0 n=0
+log |1+ exp (/KT — (1.5y/mC)5 (erm + K5* — KAL) )] } (4.24)
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It is to be noted that the structure of (4.24) is such that the pressure is necessarily positive.
We can obtain an expression which makes the integrals and the numerical approximations
used to evaluate them parallel to those of (4.22) and (4.23), if we integrate (4.24) by parts

with respect to x. The result is

pQ
NKT —
Z 2[ + 1 Z {log [1 + exp (,u/kT — (1.5\/%()%(617" + 1+ An—l—[(l—l—l)/Q]))]
=0 n=0

+ log [1 + exp (N/kT — (1.5\/EC)§(€17“ +1-— An+[(l+]_)/21)):| }

+ (L5y/7C)3 221+ Z/dm x

{ 2/€ ‘I‘ HAn+ l_|_]_ /9 (kB)
1+ exp ((1.5ﬁ() (€1 + K2 + KAny[1+1)/2) — ,u/kT)

N 262 — KAnyia+1)/2(kB) }
1+ exp ((15ﬁ§) (€1 + K2 — KARy[(141)/2]) — /kT)

In order to compute the thermodynamics of the ideal gas for a spherical cellular model

(4.25)

we first compute the eigenvalues and eigenvectors of the above mentioned blocks. These
block matrices are tridiagonal and so the numerical computations are straightforward and
quick. The eigenvalue spectrum allows us to compute by (4.22) the value of the parameter p,
and then in turn by (4.23) or (4.25) the value of the pressure. Remember that as discussed
in the Sec. II, we need to pick out a discrete set of k’s and appropriately sum over them
to simulate the integral over the first Brillouin zone. We have evaluated these equations
numerically and solve for p as described in the section on the cubic cellular model. We find
that the results of our spherical approximation for the pressure using (4.25) is accurate to
within —2.2 to +1.2 percent, and using (4.23) is accurate to within about —2.5 to +4.9
percent. Form (4.25) is somewhat more accurate in the ideal gas case, however the form
(4.23) must be used in later sections as (4.25) does not hold in general. We illustrate these
results in Fig. 1. Our results for z are accurate —10 to +4 percent. However, the equations
for z are not very sensitive to the value of z. That is to say, the change in the left hand

side of (4.22) is proportionately much less than the change in 2. It is to be noticed that for
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(4.25) in Fig. 1 the smallest three plus decades (high temperature) and about the first two
decades (low temperature) in { are accurate to fractions of a percent, and tending rapidly
to the correct values in each limiting case. For form (4.23) it is to be noticed that in Fig. 1
the smallest two decades (high temperature) and about the first decade (low temperature)
in ( are accurate to fractions of a percent, and also tend rapidly to the correct values in
each limiting case. We have studied the same range of ( here as we did in the case of the
cubic cellular model in the previous section.

The technical details of the calculations are as follows. We have divided the range of r
up into the larger of 16z or 2z+/Taximum, Where Thaximum is in electron volts, and z looks

ahead to the next section and is defined as

128\ 3 me?
—( ) e (4.26)

~ \or2 R

where e is the charge on the electron. The number of partial waves taken is governed by

L>

(V1 +3.54z — 1) + 10, (4.27)

DN | =

which also looks ahead to the next section and keeps the minimum value of the potential plus
the angular momentum barrier for the maximum value of [ outside the considered sphere.

The 10 is added for safety. In addition we require that

o=

L > {2 + 2 Thaxirana |0.86466 + max (0, 1n(2* Tonaxismumn) /17.3479)] } 7 (4.28)

which enforces the condition that the minimum acceptable value of the potential plus the
angular momentum barrier at the surface of the sphere should be 15+ 2In(L + 1). The
L dependent part is to take account of the fact that there are about (L + 1)? degenerate,
or nearly degenerate states contributing at that energy level. This restriction leads to a
reduction in the relative term size of the order of 10°. In the case reported in Fig. 1,
L = 213 and the number of intervals in 7 is 353. The method of integration over x discussed
in the previous section is used here with two Euler-Maclaurin corrections. We selected

16(1.5\/?0% + 10 intervals for the s integration, which refines the rule in the previous
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section by an order of magnitude because the Euler-Maclaurin corrections do not cancel out
as they did for the cubic model. We have checked that these rules are adequate for our
purposes by running test cases where they numbers were at least double, and found that

the resultant changes were not at a significant level.

V. SPHERICAL CELLULAR MODEL FOR AN ION-ELECTRON GAS

The addition of Coulomb forces to the spherical model of an ideal Fermi gas is not
straight forward, if we wish to be able to compute numerical results from our model. We
will in the main use the independent electron model with some modifications where required.
Initially we will begin with a discussion of hydrogen (Z = 1), which is conceptually somewhat
simpler. In the highly dilute, cold limit, following Wigner and Seitz [33], we start with the
Heitler-London atomic approximation, together with the boundary conditions as discussed
in section II, and so we start with the equation,

2 k2 - R,
() — —k - Va(7) — %V“%(T) -

m

A\ (F) = Ex(E)a (7). (5.1)

=%

2m
As is well known, the boundary condition ¢'(r;) = 0 for the ground state (even parity)
leads to a lower energy than that for the atomic ground state [30]. This boundary condition
“pushes” the electrons which would have been outside the cell into the cell and has the effect
of concentrating them in the outer part of the cell (relative to the atomic wave function).
This can be viewed as clustering electrons between the two adjacent ions, and thus lowering
the energy and forming a bond between them. This effect, in some sense, represents the
polarization attraction of two atoms, but is, of course, sphericalized in our model.
In our subsequent discussions it will be useful to introduce the relative strength of the
Coulomb energy to the thermal energy by

62

2 = . 5.2
YT kT (5:2)

The ideal Fermi gas of the previous section is characterized by y = 0, and the cold isolated

atom picture of the previous paragraph by large y. The properties of the ideal gas depend on
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¢ alone, (3.1). A considerable amount is known about the small y behavior from many-body
perturbation theory. In particular, it is known that the sum [40] of the ion-ion repulsion,
electron-electron repulsion and the ion-electron direct terms cancel in first order in e? for
electrically neutral systems. The only term which contributes to this order is the so-called
exchange term. Let us now examine the properties of the cellular model in this regime. The
ion-ion repulsion term is not in evidence because there is only one ion in the cell and the
ion-ion term for ions outside the cell is cancelled by the ion-electron attraction terms with
the electrons outside the cell. We do have the ion-electron attraction term within the cell.
As in this regime the electron density is uniform in the cell, we can easily compute this

energy as

3 2 3e2
B, =— / ars = € (5.3)
[71<rs

Amrd r 2

This derivation would normally be supposed to be valid only for high temperature (small
(), but for our boundary conditions the ground state wave function for the ideal gas is just
a constant. This circumstance leads to a uniform electron density for very low temperature
(large ¢). In Fig. 2 we plot this energy divided by the result in (5.3). We have calculated
this quantity using the spherical cellular model of the ideal gas as described in Sec. IV. It
is to be observed that the quantity is substantially independent of {. There is about a 6
percent dip near ( = 1, but this may reflect an inadequacy of our spherical cellular model.

In addition there are the electron-electron and ion-ion repulsion energies. These arise
because we are really treating an system of N electrons and N ions, each of which is present
in a particular cell with probability 1/N. This energy can be computed directly as is done
in the “Hartree term” [35]. As usual, even though there is no self-interaction, the weighted
square of the wave function need not be subtracted as it only contributes of the order of

1/N to the results. Thus we get,

e—e = 2 =
4y |71 \<r,, |72 |<Tb B |

|71 —

3e2 [ 3 2
— 5.4
27y, <47rr;?’) |'r1|<'rb l ) ] 57y (5.4)
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Ei i=|—3 dry dry ——— = —.
4mry 71| <ry |7 | <ry |7 — T Bmy

It is to be noticed that E; . + 0.5(F, . + E; ;) does not cancel. The physical reason for
this is that in this regime the ions are also uniformly distributed, there by reducing the ion-
electron attraction so exact cancellation occurs. However, since we are not going to adjust
the —e?/r term in the Hamiltonian because of its correctness for large y, we will instead
add F; = 3¢%/(10r) to E;_, to compensate for the ion distribution effect. The addition
of constant amounts to all the energy levels, by (2.5), adds the same constant to . The
changes in the potential in (5.1) necessary to take account of of all the direct terms of the

first order in 72 are the addition of the two terms,

3 2 ~ 3 2 2.2 6 2 27 2 2,.2
Bi=—— and V(r)=[--22) +(=) =22_27 (5.5)
107y 27y 2ry ). ory ). . 10my 27y

Because this potential is caused by interaction with the other electrons and between the

ion-ion pairs, as usual, we use €y, = F) — %(V} for the energies € of Section 2. When the
potential of (5.5) is averaged over the spherical cell it gives 12¢2/(5r;). The net contribution
is just one-half of that so we find that this term exactly cancels E; . + E; to leading order
in 2.

Note is taken that the total potential V (r) — e?/r serendipitiously has zero radial deriva-
tive at the surface of the celll We will see below however that this feature is only valid to
the leading order in 3.

The “exchange term” comes from the interchange of electrons between two different
states as a result of their mutual interaction via the electron-electron force. The ion-ion

exchange term will be neglected here. The first order interaction energy for all values of

is given by Baker and Johnson [19] as,

4me? [ 4mr} dkydky - -
Eexch:_ 7r66< Wrb)/ = ! _,2 ’n,(kl)'n/( 2)7 (56)
(2m)S\ 3 (ky — k2)?

where n(p) is the Fermi distribution function,

1
exp{[(A*p?/2m) — u]/KT} + 17

n(p) =
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This equation reduces to the text book result for the exchange energy when the limit 7" — 0
is taken, where n(p) = 1 for |p] < kp and zero otherwise. Baker and Johnson [36] further

give a representation which is good to about 0.1%. It is,

62 3 % 4
B = — 2V e x(0), 5.8
xch 27Ty (71’) ¢ (C) ( )
where,
- 1+ 0.088412769¢ s
X(¢) = 5¢ - - (5.9)
2° |1+ 0.79551953¢ + 0.19350034¢2 + 0.013716390¢

Clearly, this exchange term is not independent of (. When ( is large, then the text book

value of the exchange energy, as a function of wave number 7'is just given [35] by

2¢? 1k \?
= ksl (2 1
) - B[ B(kB) + (5.10)

which increases from a minimum at k; = 0 in a manner proportional to k2. We can also

kp + ky
Sl —

. 22 (1 k% —k?
k - _ k - B 1
V( 1) ™ B (2 + 4k1k‘B

compute the results for { small. Here we get, by taking a factor of two times the functional

derivative of (5.6) with respect to dn(ky),

~ — 2 o o — 2 L #2L2
V(ky) = gme / = dk2_, n(ky) ~ Sme C/ = dkz_, exp | — 2. (5.11)
2m)° S (kg — ko) (2m)? (k1 — ko)? 2mkT

Substituting ky = ks + k1 and integrating over the angles of Eg, we get,
- 2% [(2mkT h2k2 o R k2 B2k ks
V() — o) [k ~ 58 ) gint k
(k1) mky < K2 )exp( 2mkT | Jo 3 XP 2mkT St mkT [ks

2e2¢ (2mkT\ h2k2 13 2%
_ ame - o 5.12
ﬁ( 2 ) eXp( omkT ) Y"\2' 2 2mkT )’ (5.12)

where 1Fi(%;3;2) is a confluent hypergeometric function. For large k%, V (k1) goes asymp-

totically to zero like k72 and for small k? it is

fa 2¢2 /3\7 » h2k2
k)=—-"1{(Z= 31— L. 1
Viky) Th <7r) ¢ l 3ka+ (5:13)

The usual procedure for the exchange energy is to replace its effects by an effective mass.

This idea corresponds well with the small k£ behavior and the general shape of the exchange
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energy versus the wave number, at least where there is significant statistical weight attached
to the state. To implement this idea we will represent the exchange potential by

R2k?

0(F1) = V(0) +5PA(Q)

(5.14)

First we may observe that the value of the exchange energy for k; = 0 is given from (5.11)

by

N 8me? dEZ - 22 4 Oozy e ydy 2¢2 1 /3 5

VO =Gy | Tgnth = =3¢ &) 7 e = (2) s,
(5.15)

in line with the notation of (3.1). Baker and Johnson [36] have provided a representation of

fi1(2) as a function of ¢ which is uniformly accurate to within 0.1%. It is
2

1 v3<o)%
1(z) == , 5.16
R =3¢ (29 (5.16)
where
v3(¢) = 1+ 0.17549205¢ + 1.1833437 x 107%¢% 4 3.0923597 x 10743, (5.17)
and

us(¢) = 1+ 1.2361522¢ + 0.54327035¢2 + 9.7985998 x 1072¢% + 6.1912639 x 1073¢*

+1.6191557 x 10*¢°. (5.18)

To determine the value of the coefficient of k2 and thus the effective mass as a function of
¢, we require that the proper value of E. be reproduced. The multiplication of (5.14) by

n(El) and the integration over k1 leads, by two times (5.8), (5.14) and (5.15) to the equation

£ (5)% X =2 (%) F3(2) + SRTC WA f3(2), (5.19)

Ty \T b

which determines A(() to be

A(Q) = §C§ (5.20)



The function fE is just (g({) of (3.10). The behavior of A({) when { — 0 is,

A(¢) ~ (%) SE T (5.21)

which value is 2 of that obtained by cross comparison of (5.13) and (5.14). The difference
is due to taking account in (5.21) in an average sort of way the effects of higher orders in

k%. The asymptotic behavior when ¢ — oo is,

AQ) % (2% (5.22)

The summary of our investigation of the exchange energy is that we will replace its effects

(to leading order in y) by an effective mass given by

™ 14 AW (5.23)

mr
and include V/(0). T have checked numerically the behavior of A(¢) as defined by (5.20)
over the same range of ( as shown in Fig. 1, and this definition is nowhere negative in that
range. Thus the effective mass (5.23) always obeys m > m* > 0. Further modifications to
the model could be made to insure that the Debye-Hiickel and second exchange corrections
[19] are reproduce in the small y limit.

The next issue is how these energies vary as y increases. The important physical effect is
that when the electron-electron Coulomb energy is not negligible with respect to the thermal
energy, then the electron-electron repulsion forces the electrons apart and thereby reduces
the energies that depend on this interaction. There are various ways of taking this effect
into account. One can use the classical turning point and just take zero density where a
state is classically disallowed. What comes to much the same result, but is simpler to apply
is to reduce the electron-electron density by a Gibbs weight factor, exp[—e?/(rkT')] where
r is the distance between the two electrons. This method is certainly valid in the classical
limit where { — 0. It is important that whatever is done cause these energies to vanish in
the cold, dilute limit mentioned above.

To illuminate this behavior, we next compute the electron-electron repulsive energy in

the presence of the Gibbs weight factor. It is,

27



3 ™ e e? 3e? o d¢
& o= / d@ < exp [ — =2 [T e 5.24
<47r7“;:’> 0 r T P ( rkT) Th 4 gz &3 € ( )

where the change of variables ¢ = €%/(rkT) was made. For small y, by expanding the
exponential we get

3 2
Eoem (1 - 22 +..., (5.25)

2Tb

We can rearrange (5.24) to give,

=y eV (1 -3y 24..., (5.26)

_ 3€2y_26_y2 /00 e dn _ 3e?
o (I+y2m)3 n

for the large y behavior. This behavior at both the large and small y limits can be compactly

represented by,

(5.27)

) 2—|—2y2
PO, F?) ~ e ( )

where F(y?) is a damping factor for E,_.. We will apply it to E.c, as well. (The approx-
imation for F(y?) in (5.27) is not necessary as it can easily be evaluated numerically, but
it helps to summarize the general behavior of the damping factor and I will use it in this
paper.) The damping factor has the physical interpretation of representing a hole in the
electron-electron density distribution reflecting their mutual repulsion.

In addition we need to consider the modification to E; when y # 0. To this end we
note the the difference in the potential energy experienced by the electrons between the case
where the ions are uniformly distributed and the case where the ions are fixed at the center

of their spheres is given by,

2 2

e’ 3 e2 dR e [r, 3 1 /7r\?
Pz-(r/rb):——m/ ——[——§+§<—)]. (5.28)

T R<ry |R—ﬂ_Tb T Ty

When this potential difference is averaged over a uniform distribution of electrons in the
sphere, we obtain, F; = 3e?/(10r;), as before. Again, to compute the effects as y increases

from zero, we will apply the corresponding Gibbs weight. Thus,

&= [ dpR(p) el Fi(p)] (5.29)

4 Jp<

3¢2 13 1 13 1 3¢2
:—10/ i (= -2+ 20 (== 22) | b= =g
107'1,{ p<1 'O(p 2+2p)eXpl Y (p 5" 3f 10,9



For small and large y we find,

2m 5
D=1 —¢%+... d 2 x\/—— 5.30

which suggests the approximation,

3e? 1
é}z( © ) . (5.31)
107‘1, 1+ 41y2 + % %y:’,

14

Again, approximation (5.31) is not necessary because g(y?) is easily computed numerically,
but serves to make manifest the behavior of g and I will use it in this paper.

In order to take account of the many-body quantum effects of the electron-electron
repulsion and the attractive exchange interaction, I propose a modified version of (5.1),

which is temperature and density dependent. It is,

N SRS G oo ;
() = T F0n(r) = 5 = | S = eats)| )
e (2)’ 12| ) = B Brn(r) (5.32)
) Y [10 272 s 3\ AT = M '
where now we define the effective mass by
m 21,2
— = 1+ AQYyF(y). (5.33)

In order to define the energy per state to go into the formalism of Section II, we first
solve (5.32) by the methods of Section IV for the Ejy(k). Then we must deduct half of the
contributions from the electron-electron and ion-ion interactions as otherwise we will have

over counted them. Using (5.32) to eliminate the dependence on the matrix elements which

involve the derivatives, we obtain,

22 L= () aoer] re) |2 - S - £ (2) 1 <z<<>>]
-3 (%) 405 r @) [P i) — oot (5.34)
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The pressure, free energy etc. related to this revised equation follow directly from its energy
spectrum (5.34) and its derivatives by (2.5 - 2.9). These derivatives are discussed in appendix
A. The solution for this energy spectrum will be discussed in appendix B, and in the next
section.

These results may be generalized to ions of charge Z accompanied by Z electrons each.
We begin this discussion with the extension of (5.1) to Z > 1. Again we use the Heitler-

London atomic approximation which will be valid in the cold dilute limit. It is,

A e . DA A
;{%[k —22k~Vj_Vj]— v }¢A(T1,...,Tz)+§z|ﬁ_77,.|¢)\(7‘1,...,rz)
= j#l J

= EA(E)QS)\(FM s 77?Z)7 (535)

—

where ﬁj means differentiation with respect to 7;. The same value of k is used in exp(ik - 7;)
for all the 7; in order to maintain the anti-symmetry of the wave function. Of course, ¢ is
meant to embody the spin-states of the electrons as well.

When the eigenspectrum is substituted into to the formalism of Section II, it is to be
remembered that what is counted in (2.5) is the average number of occupied states, not
the number of electrons, so N remains unity. For example, in the case of the ideal gas
(non-interacting electrons) consider enlarging the cell so that it contains Z electrons. If we
still consider single electron states, then for large ¢ (picks out the ground state) we need
N = Z to allow us to occupy the lowest Z levels which we need to do in order to satisfy the
exclusion principal. On the other hand, if we consider anti-symmetric states of the whole
system of Z electrons, then the lowest energy state already involves the first Z single particle
states and so we get the same physical ground state selected by choosing N = 1 in this case.
Consequently, here we select cells that contain (on the average) one ion and its attendant Z
electrons, and choose N = 1.

Following the procedures above, we now need to “correct” (5.35) to take proper account
of the behavior deduced from many-body perturbation theory in the hot, dense limit. The

generalized versions of E; and V with the damping factors included are
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672>
57‘5

372%¢2 3e?

Bi=So—g(2y’), and V(F,...,7%) = —F(y’) F(y* 7).
Th

(5.36)

The generalized results for the exchange energy are given by defining A({) through an
equation similar to (5.19) as,

€ 1

_c <§)§C—§X(ZC):—2T—€;C_E<3)E f%(z(CZ))JrngC1y2A(C)fg(Z(CZ))a (5.37)

TATy \T s

where the value (Z replaces the value ( in the definition (3.1) of z. The solution of (5.37) is

2 4 ra\E [2(:(20) - X(20)/(r0)
40 =5¢(7) { AE) }

s
With these generalizations to Z > 1, we propose the modified version of (5.35),

(5.38)

Z ( A2 S Ze?  3Ze?
k* —2ik -V, — V3| - =— Zy? Ly ey T

;{Qm* [ L J ]] 7] + 107°b g( Yy ) ¢/\(Tl7 aTZ>
12 2 3e2 , 1 rN2 4 (3 3
— — I (y*) | Z — = (—7> ——|— 1(z(Z Ly evesy T

iwta e 235 ()5 () newa] o
62%” 22 S L, - S S
H (Y Z7) (s - T2) = Ex(K)a(rL, -, T2), (5.39)
b

where m* is again given by (5.33), with A({) now given by (5.38). Finally we need the

generalized expression for the €,(k). It is

o) = [1 =3 (5) AP F(A] B

2
_i_‘; [1 _ (7::) A(C)yZF(yz)] {F(yz) 7 — %;(@(ﬁ,...fz) :_%|¢A(F1""’FZ)>
4 (3 : -I 2 2,2
-3 (W_C> f%(Z(ZC))J +pZF(Z )}
5 (5 a0wre?) DA )l 72))
Lz e L 3ze L]
_ij#l“{))\(rl, TZ)||7—..] — —»| |¢)\(T17' 7TZ)> - 107, g(Zy )J (540)

These equations are intrinsically more difficult to solve than the ones for Z = 1, and I shall

not take up this subject here.
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VI. SPHERICAL CELLULAR MODEL FOR HYDROGEN

The basic equations for our spherical cellular model for hydrogen were derived in the
previous section. I take note that this model has not been refined to take account of phys-
ically relevant molecular hydrogen nor does it take account of any solid crystalline phase.
It looks to only the gas and fluid phases. The purpose is not to investigate solid hydrogen,
as there is already a great body of work on this topic. The molecular states which are very
relevant physically could be included by including two protons and two electrons in each cell,
but the theoretical structure requires some modification and the numerical work increases
significantly. This extension will not be part of the present work. For numerical purposes,

it is convenient to rewrite the basic equations in terms of

Tp

i) = Bia(h) (%) £ F0?) {f—g 2(%) f;(Z(C))} Y

The subscript (A) has been expanded here to (I, A) to emphasis the resolution of the eigen-

functions in spherical coordinates. Thus (5.32) becomes,

8 () — TE () — V() — | 4 S ()] 60 = ErBn(), (62
om* m* A 2 A ” 23 Y MT) = i A7), (0.
and (5.34) becomes,
Ll w32 e, (21 (33 ]
@) = (1477) 8B+ 5500+ ) |55 - (2) 560 |
@ -5 + 5 |5 + 5 ) i, (6.3

where g, F' and m* are given by (5.20), (5.26), (5.27), (5.29), (5.31) and (5.33).

Next we follow the procedures used for the spherical cellular model of an ideal gas
developed in Sec. IV, except the starting guess for p is now taken to be 5&7" plus the lowest
cigenvalue. We treat H' = —(ih?/m*)k - V as a perturbation, and solve the rest of the
equation as resolved in spherical coordinates. In order to apply these methods, it is necessary
to extend the computation of the root mean square deviation of the eigenvalues over each

nearly degenerate block to our present case. In Appendix B we discuss the character of the
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degeneracy structure of (6.2) with |k| = 0. There we find that the states are divided into
ideal-gas-like states, jumper states, and Coulomb-like states. Again, as in Sec. IV, we will
use w to denote the wth excited state, that is the w + 1st level.

For the ideal-gas-like states (w + 1 > o with o defined in Appendix B), (4.21) continues
to be valid with m* replacing m. For uniformity, the subscript w to A will be replaced by
(I,n). For the case of the Coulomb-like states (w4 1 < o), if we define L to be the lesser of

the maximum value of [ considered and w = n + [, then in this regime,

R2k2, ? 4 R\ & (20 +1
A (k)| =—= Ty i 6.4
l 2m* l7 ( )] (L + 1)2 2m* IIZZO 3 l 5 l ( )
Finally, for the jumper states,
72k ? 8 R k> 2 +1
l me Al’n(k)] - oo +1)(20+1) (2m*) 2 < 3 ) T, (6:5)
I'w)ed

where the set J is defined by equation (B11) in the Appendix B. If all the jumper states
are not included because the maximum value of [ considered is too small, then this equation
would have to be modified; however, the approximation to the physical situation would then
be rather poor so we will not elaborate on this case.

This model is defined by (4.22) and (2.9), which is made explicit in (4.23) for the ideal

gas case. Here we need to use,

2m€lvn(6)
W2k

(6.6)
with the ¢, defined by (6.3). The derivative of &, with respect to r is given by (A5). For
the complete evaluation of the derivatives necessary to put in the numerator of (2.9), we
need the derivatives of m*, g(y?), F(y®) and (3/%{)%}‘% (2(€)), as well as of course 1/7, with
respect to 7. The best method is to compute these quantities directly from their definitions
by a direct numerical evaluation. I shall however in this paper simply differentiate the
representations previously given. This procedure will insure thermodynamic consistency,
at the cost of some possible loss in accuracy. Finally we need the derivative of the matrix

element appearing in (6.3). This result is given by (A11). All these parts may be assembled

into a rather length expression for the numerator of (2.9) appropriate for this case. We take,
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h2k? N h2k2,

Enk) = &0
l’)‘( ) 51’)\(0)4— 2m* 2m*

Aa(k), (6.7)

where the &£ is for the two energy values for each |l€| that we used as the method to take
account of all the different directions of & in Sec. IV. We will use the same method here for

the same purpose. If we differentiate (6.3), use (6.7) and (A5), then we get,

s, - 1 * o1 * L R’k? R2k?
Tb_el,,\(k) = —= <1 —|— TTL_) { (2 —|— ﬂ) ng’A(O) —|— :|: BAL)\(/{)‘|

By 2 m Blog g om* - 2m?
o) | S0P - (14 G (S 4 S5 r0) |l
% 8?(:2*% l&,x(ﬁ) Z:j + i‘;’z}? Am(’f)] - e—: {%g(?f) + 13—0@/29’(92)
+oglP6) + PP - ) () o) -3 () % <f;<z<<))F<y2>}
20 ¢ ¢
brigeon =5+ 50 | 4 S| o) 68)

where the last line is given by (A1l). These equations have been programmed in the same
manner as described for those of Sec. 1V.

The are several features which are expected from this model. First, if the temperature is
sufficiently high, the electron will be mostly in the high energy states which are very much
like those for the free electron gas. This feature is the so called “hot curve” limit. As an
illustration of this behavior, we display in Fig. 3 the ratio of the electron pressure to the
ideal electron gas pressure for a temperature of 1000 electron volts, as a function of density.
(The plot is versus ( for easy of comparison with Fig. 1.) A line for the ratio exactly equal
to unity is put in to guide the eye. The fluctuations about this line are reminiscent of those
in Fig. 1. The values of the pressure ratio greater than unity are undoubtedly due to the
spherical approximation, as was the case in the spherical cellular model approximation to
the ideal gas.

Another feature which is to be expected is that when the temperature is low enough the
dominant feature is the repulsive pressure exerted by the compressed atoms as the density is

increased. This feature is the so called “cold curve” limit. The resulting pressure is roughly
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independent of the temperature. We plot in Fig. 4, the results for several temperatures.
The ratio to the Thomas-Fermi cold curve is what is plotted. I have used the representation

of Baker and Johnson [36]. It is, for reference,

5/3 2 9.715
1+ 1.59659z%- 4+ 1.06595z%~
Pcold curve — 9.0549692 (g) [( T z + T )

6.9
P 14 0.2783436z - ’ (6.9)

in megabars where z is given by (4.26), p is the density in grams per cubic centimeter,
w is the gram molecular weight, and a ~ —0.772. It is to be noticed that the cold curve
produced by this model is lower than that of the Thomas-Fermi model, which latter is known
[3] to be too high, except in the limit of infinite density where both models reduce to the
high density ideal electron gas. As the temperature increases, the pressure begins to deviate
from the cold curve at successively higher densities.

The spherical cellular model of hydrogen predicts a phase transition. This fact can be
seen, for example, by plotting the total pressure (the electron pressure plus the pressure
associated with the motion of the center of mass of the atom) versus the volume for 7' = 1.5
ev. This plot is given as Fig. 5 as the solid curve. The region where the pressure increases
with the volume is physically unstable. The dotted line represent the pressure derived from
the Maxwell construction which corresponds to a tangent line in the plot of the Gibbs Free
energy to maintain its convexity property. I take this opportunity to show some of the
effects of the many-body terms. The dashed curve is just the Heitler-London atom (with
our boundary conditions) and it omits the many-body terms. The line of short dashes shows
the Maxwell construction for that curve. The pressure-volume plot with the tie-lines drawn
in is given in Fig. 6. The critical properties of this model are: 7. ~ 1.83 ev., p. ~ 0.11
gm/cc., P. ~ 0.084 MB, (. ~ 4.4, and y. ~ 2.3. These values are at considerable variance
with the experimental values for the liquid gas critical point in hydrogen, which are roughly
33° K, 12.8 atmospheres and 0.03 gm/cc. Since there is no provision in the model as yet for
two-atom molecular states, perhaps this difference is not surprising. A V-T' plot and a P-T
plot of the phase boundary is given in Fig. 7.

Margo et al. find a critical point at about half the temperature and and twice the density
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of that given here. They indicate that they believe that there phase transition is related
to the molecular dissociation. Thus it is worth while to consider the nature of the phase
transition in the spherical cellular model of hydrogen. One method is to consider the pressure
along the phase boundary. We have plotted in Fig. 8 the total pressure divided by the sum
of the ideal electron gas pressure and the pressure due to the center of mass motion of
the electron and the proton. At least for low densities, if the system consists of hydrogen
atoms, this quantity should be about one-half. A dotted line has been included at this
level in Fig. 8 to guide the eye. A ratio of about one-quarter would be expected in the
presence of molecular hydrogen. Pressure ratios higher than one-half would be indicative
of ionization. Lower pressure ratios would presumable indicate the formation of groups of
atoms bound together. What we see is that on the high density (small V') side of the critical
point, the pressure decrease very rapidly, which probably indicates a condensed state. On
the low density side, the pressure ratio rises to about 0.69, and then declines. Another way
to investigate the nature of the transition is to plot the internal energy along an isotherm
which intersects the two phase-region. Such a figure for 7' = 0.5 ev. is shown in Fig. 9. A
dotted line has been added at the lowest energy level of atomic hydrogen. Here we see that in
the high-density region that as the density decreases toward the phase boundary (indicated
by a dot) the internal energy drops below that of atomic hydrogen due to the many body
interactions which suggest a bound many-body state of the system. The model produces
a continuous curve through the two-phase region which is shown. On the low-density side,
the energy is higher than that of atomic hydrogen and suggest the existence of some excited
states, and perhaps a bit of ionization. Continuing to even lower densities there is again
binding energy which is greater than that of atomic hydrogen. I have illustrated the effects
of the many-body terms by including a dashed curve which omits them. As also seen in Fig.
5, the deviations from the Heitler-London atom become apparent when the system becomes
mostly plasma like. The pressure ratio of Fig. 8 indeed for 7' = 0.5 ev. drops to a minimum
of about 0.33 at a volume of about 8000 cc/gm. and then begins to increase again. This

increase is to be expected as one expects total ionization [41] in the infinitely dilute limit for
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fixed temperature. One can see this effect more clearly in the energy ratio plot for 7' = 10
ev. given in Fig. 10. Also note in this figure that in the high density limit, the increase in the
free electron energy (and pressure) due to the Pauli exclusion principle swamps the effects
of the Coulomb interaction and again leads to Ujg., as the asymptotic value of Ugectron-
We conclude that the phase transition found to occur in this model is best described as a
localization-delocalization transition.

One further question of interest is the low-density ionization profile predicted by this

model. The Saha formula [42] suggests that

1
Z; = ,
1+ Al exp(x/T)

(6.10)

where A is a constant, and x = 13.5978 ev. is the ionization potential for atomic hydrogen.
For isochores, this equation suggests a plot against 1/7" would be appropriate. I give such
a plot in Fig. 11 for four different densities. The curves could be extended to the phase
boundaries, but they are most relevant to ionization behavior while they are positive. Even
here the pressure probably understates the degree of ionization, as there may well be some
clumping of atoms which would give a negative contribution to the electron pressure. This

issue requires further investigation.
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APPENDIX A: ENERGY DERIVATIVES

In order to use (2.9) it is convenient to re-express d¢;/9r, in terms of the wave function.
First note that for k in the first Brillouin zone, it is to be remembered that k can be
parameterized as k= R/ry, with £ independent of the cell size. Also we will use 7 = 7,5
and the derivatives V and V2 are to be taken here with respect to p- In this notation, (6.2)

becomes

h2 2 fo S — —
5 (K2 = 208 -V = V2) ¢(ry, §) + V (r1, ) b0, §) = E¢(rs, 7). (A1)

2m*r;
If we now differentiate with respect to 7, and denote the partial with respect to 7, by an

over dot, we get,

R 2 m _— :
g (T_b m*) (k2 = 20 -V = V2) $(r3, 3) + V(rs, §)b(rs, 7)
B2y e oo . : )
T2 (k* = 2iR -V = V2) §(rs, §) + [V (13, 5) — E](r1, ) = Ed(ms, 7). (A2)

The next step is to multiply (A2) by ¢*(rs, p)d7 and integrate over the unit cell. The result

is,

- 2
(24 [ 600 { o (429 9 0 Vo 16

r, m* 2m*r

m*

41} [ 45600, [V (00, + (= 4 2 Vo )] dlr, )+
2[5 ) {5

2m*r§

(52 — 2RV — VZ) (s, ) + [V (s, ) — 5]45(7’1),5)} =£, (A3)

where use has been made of the normalization of ¢. If we now use (A1) on the first line of
(A3), integrate by parts in the last line so that the derivatives act on ¢* instead of gf), and
use (A1) again, we get

= (24 et [apg ) [V )+ (2 4+ ) Vi) 600,

Ty m* b

K2 - : . :
v [ S [8 (0, VD10, 7) — B, AV (10, 7) + 2056 (re, DD, )], (A4)

where [ dS is over the surface of the cell and 7 is the outward pointing normal. The last

line in (A4) vanishes because of the periodicity. That is to say, the value of the ¢’s is the
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same on opposite sides of the cell, but the normal vector 7 points in opposite directions, so

these contributions cancel each other. Thus we conclude that,

’I’ba—g:— 2+7alogm 8
dlogry,

0log m*

) Vit ot . (A5

+r3 / A5 (ry, 7) lrbV(rb, ) + <2 +

We really need ¢ \/0rp, so in addition, we need, by (6.3) to differentiate the further

term.

i@l {2+ 2% 4 S2r 0] e = (A6)

2r 2m | r 27"}:’

(@ {V}8) + (8 {V}I8) + (] {V}|9),

schematically. This formula requires the values of q'ﬁ(rb, p). If we substitute the results of
(A5) in (A2), then we get an inhomogeneous differential equation for QZ.S(T‘b, p). The boundary
conditions (in spherical coordinates) are easier to describe if we make the usual substitu-
tion, u(ry, §) = rupd(ry,F). Then, necessarily @(ry,0) = 0. For the case of odd parity
states, we also must have u(ry, 7,) = 0. For even parity, 9¢(ry,7)/0r|,=r, = 0 implies that
pou(ry, p)/0pl,=1 = u(rs, p)|,=1, which, by taking the partial with respect to r, gives di-
rectly the remaining boundary condition that du(ry, p)/0p|,=1 = w(rs, p)|,=1 for states of
even parity. As these boundary conditions are the same as for the eigenfunction solutions

of (A1), we may expand,

Ot (re-p) _ > aur(re, ). Ao
ary, VA '

To express the solution, it is convenient to define the quantities,

2 2
2 e?

Vo(1,A) = — (1 (re, D) p~ | dia(re, 2))  Ho(l, ) = T—b<¢l,u(7’b,ﬁ)|P2|¢l,A(7“b,ﬁ)> (A8)

e
Tp
The next step is to substitute (A7) into (A2), to multiply on the left by ¢;,(r4, p)d" for

v # X and to integrate over the cell. If use (Al), we can eliminate the derivative and the

explicitly k dependent terms. The result is,
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2 2 2 . %
_ _ < A [ PY 2y (L m) L P
(63— uwlar, = Sl | S0 - (5 +22) (4 32762l )
(A9)
Thus,

8¢l,\(rb, 0) b1, (7 b,ﬁ){ ( 810gm*)

— K. = 1+ ——|Vu(,A
8’]"}) I;\ 81 v 81’)\ 8log b ( )
1 OJlogm )

+5 l(l—l— 8logrb>F(y ) — ¥ F'(y ] } (A10)

The substitution of (A10) into (A6) gives, for the needed case k = 0 where V and H are

real, the result,

NG et [ + o P @) = (14 G (- 1) g,

) F(y®) - yQF’(yz)] :

8logm

m 2

F(y™)B(1, A)

1
2
m

8log 5 m
+ {( glfoggrb ) () +1 (H _ 1) Kl + %ngi) F(y?) - yQF’(yQ)] } C(l, )
+3 (1 )VA(Z A) + %8?:; Va(l, A) + ;F( 2)H, (1, V)]
(P + P F )AL, (A11)
where we define the further quantities,
(1, A H, (I, A L, A)VH, (1, A
W= B =X L o= g B

Thus the substitution of the results of (A5) and (A12) into (2.9) plus some further
straightforward differentiations gives via (6.3) an explicit expression for the pressure. Like-
wise, we obtain an explicit expression for the Gibbs free energy by means of this result and
(2.10).

The computation of d¢; /0T |q needed in (2.7) proceeds in a similar manner. It begins

with the differentiation of (6.2) with respect to T" as at (A2). The result is
2

om* h2 ) R ) . e2r2 o g
o 2 K = 2KV = V2) () + o ()7 9(7)

R e oS o 09(7)  [e*  e*r? G
+%<k —22/{-V—V>—8T — 7+2—7€)F(y)—|—5 8—T_8_T¢(T)’ (A13)

43



where use was made of 9(y*)/0T = —y*/T. Again the next step is to multiply by ¢*d7 on
the left and integrate over the spherical cell. As in the transition from (A3) to (A4) the
operators acting on 9¢/0T are, by an integration by parts made to act on ¢* instead and
then by means of Schrodinger’s equation eliminated in favor of some surface terms. These
terms cancel as they did in (A4). By further use of Schrédinger’s equation we can eliminate

the matrix elements depending on derivatives and thus obtain,

88 B T 8m* 2 2 . €2F/(y2)y2 e o .
ror =S e+ [ | S 4 Srwn o)+ S fareerra

(A14)

The 0¢/0T now follow by straightforward differentiation of (6.3) with respect to T'. It is to
be noticed that, as in (A6), the /9T of the same matrix element is also required. Again if
we use the standard substitution, u(r) = r¢(r) for the radial part of the wave function, we
find Ou/OT = 0 for r = 0, and also for r = 7, for states of odd parity. For states of even

parity, the other boundary condition is

*u(r) _ lﬁu(r)
oroT — r 0T

for r =1, (A15)

Again we find that these boundary conditions are the same as those satisfied by the eigen-

functions of (A1), so we can make the expansion,

5¢1,A(7'b-,5)

oT - Z bl,yd)l,l/(rhﬁ)' (A16)

v#EA

Proceeding as above, we find,

T 8¢l,)\ (Tba /5) —
oT

V00 + 3RO - 2P AN}

(A17)

(]5[7,\(7'1,, /?) { 810g m*

v Clv —&n | OlogT

-

Thus we get, again for the needed case k = 0.
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m* 0log m* 9 <m_*_
* l(m * 1) 8logT P m L ]
1 om*

+2m81 Va(l,A) + 2F( v Hy(1,\)] —

(v Ha(L, V), (A18)

Thus the substitution of the results of (A14) and (A18) into (2.7) plus some further straight-
forward differentiations gives via (6.3) an explicit expression for the internal energy, which

together with (2.6) also gives an explicit expression for the entropy.

APPENDIX B: THE COULOMB-OSCILLATOR EQUATION

-,

The following Schrédinger equation arises in Sections V and VI (for k= 0) when the

many-body effects are taken into account in the manner that we have proposed.

v - (S vart) o) = B0l (BY)

This equation can be separated in spherical coordinates in the usual way to yield the radial

equation,

P (ii’rQi _ J; 1)> Ry(r) — (672 + arz) Ri(r) = ERy(r), (B2)

Com \r2dr dr r

with the boundary conditions R;(0) is finite and
Ri(ry) =0, lodd, Ry(ry) =0, [even. (B3)

If we use the notation

A=-igrn, BTG o PmE B awd p=", (Ba)
then (B2) becomes,
2%}5") + 2pd%p) + (A+ Bp+ Cp®+ Dp*)Ri(p) = 0. (B5)
If we make the usual substitution,
Ri(p) = w(p)/p, (B6)
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then (B5) reduces to,

2 dzul(/))
P dp?

+(A+ Bp+ Cp* + Dp*)ui(p) =0, (B7)
where now 1;(0) = 0 and (B3) becomes,
w(l) =0, lodd, (1) =1w(l), [even. (B8)

We now have the degeneracy of the 2/ + 1 m states for each solution of the radial equation.
For both the Coulomb potential, and the harmonic oscillator (a < 0) potentials in an infinite

cell, there is further eigenvalue degeneracy. If we substitute the series expansion,

w(p) = p" Y a;p’ (B9)
j=1
into (B8), then the indicial equation implies that » =1+ 1 or v = —I[. The second case is

ruled out by the boundary conditions, so we select the first case. Thus we get the recursion

relations,
. .2 . -1 .
a; = 0, 1< 0, ag = ]_, a; = — [j + (2l + ].)j] (Ba]'_l + Ca]‘_z + Daj_4), 7> 0.

(B10)

A straightforward analysis indicates that the a; decrease like (j !)*% when D # 0, so this
series converges for all finite p. [For a > 0 the regular solution oscillates very quickly
like exp(%i\/ﬁpz), for large p, but this feature is not of concern to us here as we are only
considering the range 0 < p < 1.] For the given the values of B and D, the value of C' must
be adjusted to satisfy the boundary conditions. For the case of (6.2), D = $F(y*)B and
B = (3y/7/0)}

In order to implement our approximation scheme to include the effects of the operator
H' = —(ih?/ m)/; -V for the Coulomb-oscillator equation, we need to consider the degeneracy,
and near-degeneracy structure of the eigenvalues. I have computed them numerically by the
same methods as used in Sec. IV. The first observation is that for the higher energies, the

states for which s + [(I + 1)/2] is a constant are nearly degenerate, as we also saw for the
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ideal gas according to equation (4.17), where again s is the level number and [ is the angular
momentum index. The second observation, is that when the system is sufficiently dilute,
the very lowest levels follow the degeneracy pattern of the Coulomb problem. That is to
say, the states for which s 4 [ is a constant are very nearly degenerate. There is a fairly
sharp transition in the eigenvalue structure as it jumps from one regime to the other. If
o is the highest level in the Coulomb regime for [ = 0, then this jump occurs between the
levels o0 and o + 1 for [ = 0. The marker for o is the condition that the energy level gap
Ey o411 — Ey o is a relative minimum among the energy gaps. There then remains a number
of (I,\) states which are in neither regime but lie in the jump. I call them jumper states.
There are o(o — 1)/2 of them, or when the degeneracy of the 2/ + 1 m-states is taken into

account, there are o(o — 1)(20 + 1)/2 of them. Specifically, they are the states for which

[+1
max(c — [+ 1,1) <A <o — l%], (B11)

holds, and we call the set of (I, A)’s the set 7. I observe that that all the jumper states lie
in a fairly narrow band of energy, so in line with our approximation in Sec. IV, I will treat
them as nearly degenerate. As an illustration in Fig. 12, I show a sample of the structure
for D = 1B (its maximum value) for hydrogen at a compression of 4 x 10~ times its normal
density. The Coulomb-like states are very close to being degenerate (on this scale). The
ideal-gas-like states in the low levels show noticeable variation within our nearly degenerate
groups, as was also the case for the ideal-gas states tabulated in Table I. The shift between
the F' = 0 case and the F' = 1 case displayed here is imperceptible for the Coulomb-like
states (on this scale) and for the ideal-gas-like states is about one or two dot widths. For
intermediate compressions, the low-lying states are noticeably effected by the F' corrections
but the higher states not so much. For high compressions (for example, 20 times normal
densities) the effect of the F' correction is not visible on a plot similar to Fig. 12. The
effective mass correction only effects ¢ and not y. Since C' = (3,/7/¢)% (E/kT), the value of
E/kT is just that for the same value of y and a different value of (. Thus the degeneracy

structure of the eigenvalue spectrum is not affected by the mass correction, although the
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values themselves of course are.

We illustrate in Fig. 13 some of the eigenvalues for the Coulomb potential in the case
of a compression of 0.2 times normal liquid hydrogen density. The dotted line connects the
eigenvalues for which s + [%] = 27. This identification corresponds to that for the ideal
gas for a set of nearly degenerate states. It is to be observed that, relative to the eigenvalue

spacing, these states are nearly degenerate. A little even-odd fluctuation can be seen.
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FIGURES

FIG. 1. The pressure of the spherical cellular model of an ideal gas divide by the pressure
of the ideal Fermi gas versus (, the deBroglie density. The solid line is for (4.25) and the

dashed line is for (4.23). The dotted line is for a ratio of unity and is put in for reference.

FIG. 2. The average value of ion-electron attractive energy as computed in the ensemble

determined by the spherical cellular model of the ideal Fermi gas.

FIG. 3. The ratio of the electron pressure for hydrogen to the ideal electron gas pressure

plotted versus ( the de Broglie density along the 7' = 1000 eV isotherm.

FIG. 4. The ratio of the electron gas pressures for hydrogen at 7' = 2, 5, 10, and 100
ev. to the pressure computed in the Thomas-Fermi model at the same volume and zero
temperature. There is a dotted line included at unit ratio to guide the eye. The volume is

in cm?® per gram.

FIG. 5. The total pressure for hydrogen in megabars as a function of the volume in
cc. per gram for the 7" = 1.5 eV isotherm. The solid curve represents out model, and the
dashed curve omits the many-body terms. The dotted line shows the cross-over pressure as
computed by the Maxwell construction for the solid curve. The line of short dashes shows

it for the dashed curve.

FIG. 6. The total pressures for hydrogen in megabars versus the volume in cm® per gram
for the following isotherms. In descending order, 7" = 10, 5, 2, 1.83, 1.7, 1.5, 1.0, 0.5, and
0.1 eV.

FIG. 7 The phase boundary of the cellular model of hydrogen in the volume-temperature

plane and the pressure-temperature plane. The dot is the critical point.
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FIG. 8 The ratio of the total pressure to that of the sum of the pressures due to non-
interaction electrons and protons along the phase boundary. The critical point is indicated

by a dot. The expected value for atomic hydrogen is indicated by a dotted line.

FIG. 9 The energy of the electron in the spherical cellular model of hydrogen at a
temperature of 0.5 eV as a function of volume. The energy is in electron volts and the
volume in cm? per gram. The dotted line indicates the binding energy of the electron in
atomic hydrogen. The large dots mark the boundaries of the two phase region. The dashed

curve is the result with no many-body terms.

FIG. 10 The ratio of the energy of the electron to the energy of an electron in an
ideal electron gas as a function of density for the 7" = 10 eV isotherm. The density is in

grams/cm?. .

FIG. 11 The ratio of the electron pressure in the spherical cellular model of hydrogen to
the pressure of an ideal electron gas for the four densities which are the result of compression
of 1, 0.1, 0.01, and 0.001 of a system of the density of liquid hydrogen. The temperature is

in electron volts.

FIG. 12 Some of eigenvalues in units of 4 Rydbergs for the Coulomb oscillator potential
of (B7) with D = 3, and B = (3y/7/¢)5y2. (F =1) The jumper states are connected by
solid lines. The Coulomb-like states are connected in groups by dotted lines, and lie below
the jumper states. The ideal-gas-like states are also connected in groups by dotted lines but

lie above the jumper states.

FIG. 13 Some of the eigenvalues in units of 4 Rydbergs for the Coulomb potential for

hydrogen. The dotted line connects the eigenvalues characterized by 27 = s + [H'Tl]
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TABLES
TABLE I. The values of p; » in units of 7. w = XA+ [(I + 1)/2] where [a] is the greatest integer

not exceeding a.

I\ w 0 1 2 3 4

0 0.0000 1.4303 2.4590 3.4709 4.4775
1 1.4303 2.4590 3.4709 4.4775
2 1.0638 2.3205 3.3785 4.4074
3 2.2243 3.3159 4.3602
4 1.7974 3.1323 4.2321
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