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ABSTRACT

From previous finite-temperature, quantum, many-body perturbation theory re-
sults for the grand partition function of an electron-ion fluid through order e*, we
compute the electron and ion fugacities in terms of the volume per ion and the tem-
perature to that same order in perturbation theory. From these results we also give
the pressure, again to the same order in perturbation theory about the values for the

non-interacting fluid.

I. INTRODUCTION AND SUMMARY

There has been, and there continues to be, strong interest in the computation
of as much as possible in the way of exact results for the equation of state of matter
under extreme conditions. In stellar interiors, in plasma fusion, and in some other
applications, the familiar regime of solids, liquids and gases ceases to be germane.
Rather the fluid state in which liquids and gases are not distinguishable is what is
important. In this paper we will be concerned with a hot and/or dense system of
electrons and ions. In a previous paper [1] we have begun the computation of the
expansion in powers of the charge on the electron e of the thermodynamic functions
about the ideal Fermi gas or “hot-curve” limit. In that paper Matsubara, many-body
perturbation theory [2] was carried through the second exchange correction (order e?).
And all the terms necessary for the expression of the grand partition in terms of the
fugacity were obtained to that order. In this paper we extend that effort by solving
for the electron and ion fugacities in terms of the volume per ion and the temperature.
From these solutions, we are able to express the perturbation coefficients, in principle
exactly, in the same terms, through order e*. As a practical matter we will however
use various representations which have a maximum error of the order of one tenth of
a percent.

In the second section, we recapitulate the results of our previous work [1], re-
casting it in the process explicitly as the logarithm of the grand partition function
in terms of the volume, temperature, and the parameters electron and ion fugacity.
From the standard quantum statistical mechanical equations [3] we have the equations
necessary to eliminate the fugacities. In the third section, we solve these equations



and use the solutions to give pressure as a function of temperature and density. From
the pressure, one can, by standard thermodynamics, derive expressions for the other
thermodynamic quantities, but we have not done so. In the fourth section we obtain
the necessary representations for the functions of the de Broglie density, to an accu-
racy of the order of one-tenth of a percent or better, necessary to actually evaluate the
expansion coefficients. These expression are good over the full range from an ideal
gas to a degenerate Fermi gas. A limiting version of the expansion is given which
indicates the behavior for low densities and high temperatures. In the fifth section,
we examine the actual values of the expansion coeflicients. Some further limiting
versions of the expansion are given which address the region of high density.

II. FUGACITY EXPANSION OF THE COEFFICIENTS

In this paper we will treat the electrons as Fermions, but will treat the ions
as Maxwell-Boltzmann particles. The treatment of the ions could be improved, if
required. The pressure we will be concerned with is the total pressure. We start with
the electrically neutral Hamiltonian,
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where 7, p are the position and momentum for the electrons and R, P are for the
ions of Charge Z. Although not expressed in exactly this way, we [1] have previously
obtained by means of Matsubara perturbatlon theory [2] the necessary information for
the grand partition function for an electron-ion fluid with the coefficients expressed
as a function of the volume (2, the temperature 7', the electron fugacity z, and the
ion fugacity z;on. It is useful to recapitulate these results here. First we introduce the
notation,
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which will be useful. Thus, taking account of the sign error in (2.3) et seq. of reference
[1], and without including the missing e* term in the sum of the ring diagrams, we
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where h is Planck’s constant, the 2 in front of I_%(z) is because of the two electron

spin states, and h is an arbitrary constant with the same dimensions as Planck’s



3

constant. An alternate expression for the Debye-Hiickel term [the coefficient of €3 in
(2.4)] which facilitates comparison with other work [4] is

27 2 Zion ONiew 2z O(ZN)]?
NEAP | o

3 Q 9z,  Q 0z

The fugacity expansions of the other functions in (2.4) are given by Baker and Johnson
1] as,
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From standard quantum statistical mechanics the required functions may be
deduced from equation (2.4) by means of
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where Njon, = N for system neutrality.
To implement (2.11) we need the function, I (z) whose expansion is given above,
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The function I_: has been studied by Baker and Johnson [1], but we need to inves-
tigate the second two functions. They have found the asymptotic behaviors,

N

2 . 3
O(z) x — (logz)2, T(z)x (0.2276 4+ 0.0003) (log z)=, z — oo. (2.16)

me
Thus we can deduce, in a straightforward manner,

Lo(z) = 2 (log2)?,

dZ 71'2

NI»—\
NI»—\

d -
e-T(z) = (03413 £ 0.0004)(log 2)%, = — co. (217)
z

In addition we need the derivative zdI_;(z)/dz. The integral expression and the
series expansion in (2.2) are well defined for I_ 1, as is the I'-function. In addition the

asymptotic behavior can be deduced from the known asymptotic behavior of I 1 (z)
[3]. Thus, using (2.3),
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It turns out that a knowledge of these above mentioned functions will suffice to
permit the back substitutions of the solutions of (2.11-12) for z and 2., into (2.10)
to give the results for the pressure.

III. SOLUTION OF THE FUGACITY EQUATIONS

The next step in our program to develop computable expressions of the ther-

modynamic function through order e* is to solve for the fugacities. The following
notation will be useful,
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where ag = hi* /me? is the Bohr radius. Equations (2.11) and (2.12) become,

ZN =20 <2WZ;]€T) % {IF%((;)) + %62 [I_;(z)r

@)

h2M 2
3 N 1 1
+e | Z <~2m) Zion + ﬁl —('Z)] ZdZI_E(Z)
1 d d
€ [deZT(z)—l—deG(z)] + o(e )} (3.2)
N s 0 (27r]llkT> z
7,2

h2M 2
2
" ”ﬁzl (o) ot a9




5

where (2.13) has been used. These equations are two, coupled, non-linear equations

in the two unknowns, z and z;,,. Fortunately, they can be solved through order €* in
a fairly straightforward manner. First, given z, equation (3.3) yields,
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where the leading order of z in powers of € is sufficient to the accuracy required here.

As the derivatives of the various functions of the fugacity are more natural in
terms of dlog z, it is most convenient to solve (3.2) by means of the expansion
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Since, (2.2), the right-hand side is a series in z beginning with z + ..., the series

may be reverted to give zo(() as its solution. This procedure has been done by Baker

and Johnson [5] through order (3°. They carried at least 58 decimal places as the
equations are rather ill conditioned. The solutions for the remaining terms are
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where the leading order of z;,, in powers of € is sufficient to the accuracy required
here.

When these results are back substituted into (2.4) and expanded in powers of y,
we get,
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The coeflicients in this expansion are,
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where Baker and Johnson [1] report that for a pure element, Z = Z. and in the case
of mixtures,

Zspecies NJ ZJ Z _ Zspecies NJ Z_72
Zspecies NJ , Zspecies NJ ZJ ,

where IV; is the number of ions and Z; is the nuclear charge in each species.

Z = (3.15)

IV. EVALUATION OF THE COEFFICIENTS
OF THE PERTURBATION EXPANSION

The coefficients of the perturbation expansion have been determined as functions
of (. Specifically they have been determined as power series in (. Here we will give
approximations to them in compact form. The most straightforward one follows
immediately from (3.6)

1,(0) = I3 (0(0)) = VaC. (4.1)
Next, Baker and Johnson [5] have given the representation,
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This representation, and all the subsequent ones given in this section are accurate to
about 0.1 %. The next ingredient we need was given by Baker and Johnson [6],
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where
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+6.1912639 x 1073¢* + 1.6191557 x 107%¢°. (4.4)



Three further ingredients were given by Baker and Johnson,
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In order to complete our set of representations, we need representations for the
other three functions. To obtain them we substitute the Baker and Johnson [5] series
expansion for zy(() into those three functions to produce series expansions in {. By
combining (2.18) and (3.6), we find the asymptotic result,
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which allows us to convert our previously given asymptotic results in z to results
in (. By use of the Padé approximant method [7], tailored to represent the series
about { = 0 and the asymptotic behavior at z — oo, we have computed the following
representations.
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where
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These representations complete the ingredients necessary to compute expansion
coefficients G;(({) given by equations (3.11-14).

It is worth noting that the information we have obtained so far also allows us to
give the leading terms in the expansion in inverse temperature of the first two terms
of the low density expansion of the pressure (and, of course, of other thermodynamic
quantities as well). For compactness of expression we will use the de Broglie density

¢, which is proportional to the ordinary density, and € which is an inverse temperature
variable (3.1), to express our results.
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which conforms well with the result that there is complete ionization in the low density
limit [8].



V. BEHAVIOR OF THE COEFFICIENTS
OF THE PERTURBATION EXPANSION

In figures 1 — 4 we plot, as a function of { the de Broglie density, the values of
the coefficients G of (3.11-14) for the sample case of Aluminum (Z = 13).
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the absence of Coulomb interactions.

The structure of the coefficients G;({) shown in the figures reveals three basic
regions. The smoothly behaving low density and high density regions, and the some-
what more complex transition region. The function Gy(¢) tends to 1 + Z for small ¢

and diverges like ( 3 as ¢ — oo. The function G2({) vanishes like ¢ 3 when ¢ vanishes
and goes to a constant value for large (. The function G5(({) changes very little over
the whole range of { and is always of order unity. That is to say that this term is
basically a classical one with very little dependence on quantum effects, i.e., on (.
The function G4({) vanishes like ¢ 3 as ¢ — 0. As {( = oo, the leading order terms

are of nominal order ( _%, however they cancel identically. The next order should
be of the order of (72, and this probably describes the actual behavior for large (.
Numerically, however it appears to fall off about like ( —3% because the representa-
tions which we use, while good to within a tenth of a percent, will not necessarily
adequately represent differences where the dominant terms cancel out. Consequently
our numerical difference is smaller than the dominant terms by a factor of (! rather
than by a factor of ( ~3 as might be expected from the asymptotic behavior [3] of the
functions involved. It should, however, be remarked that this cancellation problem
only occurs when G4(() is significantly smaller than the other terms.

These remarks concerning the large { behavior can be summarized in terms of
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the leading order behavior of the coefficients in the high temperature expansions,
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In addition to the inverse-temperature expansions (4.17) and (5.1), there is a

high-density version of the electric charge expansion. It is

A

B = Gol0) + Ga(Q)o + s Q)i + GalC)a + ola),

where the coefficients are given by (3.1) and (3.11-14) as
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(5.2)

(5.3)

The expansion (5.2) is fine for small ¢ (which actually means very large T'), but is
not a true high-density expansion, because for fixed T', { diverges as zo — 0 and, as
the coefficients diverge with {, we have a singular expansion. Even when divided by
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Go({ ), G’g(C ) still contributes a divergence. This feature is in contrast to Thomas-
Fermi theory [6] where the limiting values of the coefficients in (5.2) are all finite.

Note that Thomas-Fermi theory also lacks the offending G3 term which spoils this
expansion in our case. In addition, it lacks a phase transition as temperature (or
density) approach zero along a line of constant (, as is most likely the case for real
substances. A phase transition represents a barrier to the analytic continuation of
the series expansion.

There is one more insight that we have noticed from the expansion in the electric
charge. Let us consider the limit as zy — 0 for fixed y. By (3.1), ( — oo in this
limit. One reason that this proceedure is of interest is that y measures the ratio of
the interaction energy to the thermal energy. Thus we might expect that for large
y the model will give the “cold curve.” Physically speaking, when this ratio is large
enough, we expect that a further reduction in the temperature will make no difference
and the pressure will depend on the density alone. If we use the asymptotic behavior
that we have previously gotten for this limit, we obtain the expansion terms,
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where the first square-bracketed term is the usual Fermi energy. We expect that higher
order terms from the repeated scattering of the same two particles will contribute
more y dependence to the zy term (the corrections to G contribute to the z2 term).
Terms involving the simultaneous interaction between three or more particles should
contribute to higher powers of zy (except for cases like the ring diagrams which
have singularities due to the nature of the Coulomb potential) because at least two
particles must be in the same spin-state and so their relative wave function must be
anti-symmetric, which puts a zero in the wave function when the positions coinside.

+ o(:co)} , (5.4)
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