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Abstract

The expansion in powers of the electron charge, e, for a neutral system
of electrons (Fermions) and ions (Maxwell-Boltzmann particles) is extended
to order e* for arbitrary values of temperature and density. The methods of
calculation of the series terms will be illustrated, and some of the consequences
of these results will be discussed. The ionization profile so derived, at least at
high temperatures, will be contrasted with Saha theory. Some special features

of hydrogen related to the possible plasma phase transition will be noted.
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I. INTRODUCTION

In this paper, we will first sketch the calculation of the pressure of a neutral, ion-electron
gas as an expansion in powers of the electron charge e, by means of the Matsubara, finite-
temperature, many-body, perturbation theory. For a full report on the expansion, see ref-
erence [1]. Much previous work has been done in this general area [2]. In this work we
address the systematic expansion of the pressure of an electron-ion system [3], rather than a
one-component plasma, in powers of the electron charge. This method of working is different
in an important sense from much other work. It is based on the ideas of Taylor’s theorem
and of methods of analytic continuation. In the theory of critical phenomena, this method
is a standard one [4], and has worked very well on a variety of lattice spin-models and other
problems too. It has been used to determine the location and the nature of the critical point.
We know from the theory of phase transitions that as the critical point is approached, the
compressibility diverges, for example. We do not have enough terms actually to obtain good
results very near the critical point, but as the divergence in the compressibility is normally
manifest a considerable distance from the critical point, we will be able to see this early
indicator of a possible phase transition. Often workers have looked for a low density expan-
sion, or summed up what they deem to be the most important classes of diagrams that they
were able to do. When used to study critical properties, this latter method has commonly

been found to mischaracterize the nature of the critical point.

II. BACKGROUND

The starting Hamiltonian is
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The key thermodynamic formule are [5]
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where @ is the grand partition function.

Thus our basic formula is

pQ = / eV de? + pol.
0

For the Coulomb potential the wave number representation is #(q) = 4me®/q>.

In these diagrams the wavy lines represent the momentum transfer, the solid lines the
fermions and the dashed lines the fermion holes. Each fermion line has a wave number ¢, a

frequency w, and a factor of
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associated with it. Momentum and frequency are conserved at every vertex. The frequencies
associated with the fermions are odd (w, = (2n + 1)7), and those with the momentum
transfers are even.

In Fig. 1 we show the first order terms. The direct order e term vanishes by electrical

neutrality. In the exchange term, summing over the frequencies, we get
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In the second order in e? there are a number of cases to consider. The first is the direct

term as shown in Fig. 2. It gives
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Summing over wj, wy We get
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The Gell-Mann Brueckner trick [6] to handle this divergent term is to sum over the ring

diagrams before doing the integral over ¢. The third order ring diagram is shown in Fig. 3.
It gives
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The series is just a geometric one, and so the contribution to (V') sums to

s far [87e*2(,w0)]" ¥

q> — 8me?=E(q, ws)

in which the integration over d¢ is no longer singular, however as we will see below, this
term is now proportional to 3 instead of e* its nominal order. When integrated with respect

to de? this term for pQ becomes

This is the famous Debye-Hiickel term. The sum of the ring diagrams in leading order in e
and including the ion-ion, electron-electron, and ion-electron effects is
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The next order corrections are e* and not just e°.

The remaining, necessary second order diagrams in e* are shown in Figs. 4 and 5. Of
these only F5, and F9y contribute as the rest vanish by electrical neutrality. The work in
producing formula for these terms is similar to that given above, but more lengthy and a

great deal more tedious.



The next step is to expand everything in sight in terms of the electron and ion fugacities,
z = exp(u/kT), zion = exp(tion/kT). We use Eq, as an illustration. The integral formula

here is,
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We ignore the ion-ion term as relatively small. Let us make the change of variables p; =

Eg — El and py = ];;3 — El. If we now expand this equation in powers of z we obtain,
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If we integrate over El by completing the square in Cartesian coordinates, then this equation

becomes,
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If we integrate over all the angles except that between p; and p; and denote the cosine of
that angle by 7, then if we integrate over the magnitudes in the standard way for a quadratic

form in the exponent, we get
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The final integral can now be evaluated to yield,
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Then we solve the thermodynamic equations,
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and re-express the coefficients in terms of the dimensionless de Broglie density (, which is

independent of the electron charge. The expansion is in terms of the dimensionless electron
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charge y.

This work is straightforward, but again lengthy and tedious. Finally it remains to provide
convenient computational expressions for the various infinite series we have obtained in (.

To do this we first revert the series expansion,

to give z((), and then back substitute to give series expansions in powers of . In our sample

case, we form Padé approximants [7] to the series and get,
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to an accuracy of 0.1% for the integral, where,
ps(¢) = 0.30229989¢3 4 5.0287616 x 10~2¢*

+3.6103004 x 1073¢° 4 1.0210313 x 107*¢°,

05(¢) = 1+ 1.2478566( + 0.55778521¢* + 0.10432105¢>



+7.2823921 x 10 3¢* + 2.1384429 x 10 4¢3,

where use has been made of the result that this quantity is asymptotic to 247r%C as ( = 00.

The other quantities can be represented in the same way, with more or less the same degree

of difficulty.

III. HYDROGEN AND A POSSIBLE PLASMA PHASE TRANSITION

If we put all our results together, then we have the series expansion
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where the series coefficients are give explicitly by relatively messy expressions in terms of (.
Graphically, we have G, the ideal Fermi gas curve, in Fig. 6.

In Fig. 7 we have the ratio Go/Gy. In Fig. 8 we have G3/Gy, and in Fig. 9 we plot
G4/ Gy.

The results plotted in Fig. 10 show that the wrinkles in the curves interpolated from
the series line up nicely with the critical point estimates given in references [8] and [9]. It
supports, but of course does not prove, the existence of such a phase transition.

The misalignment (seen before) of the value of ¢ for which the ideal Fermi gas function,
(Pauli principle) and the Debye-Hiickel function make their big changes in behavior is what
causes the wrinkle in the contours previous shown, and presumably is what drives the phase
transition (if it exists). This effect is too small to cause a similar effect in Lithium or any

Z > 3, and is dubious for Helium.

IV. COMPARISON WITH SAHA THEORY

From the series expansion in e? we can compute the early terms of the low-density

expansion:



where € T‘i, independent of density. This equation is the low-density limit of the
ionization profile, at least for high temperatures.

In Saha theory [10] it is usual to take the degree of ionization to be proportional to
the electron pressure; dividing the electron pressure by the ideal electron gas pressure, we

deduce,
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where ag is the Bohr radius. By contrast, the Saha formula
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given by the exact expansion. Here p is the electron density. The difference is a significant

effect of quantum long range forces.



REFERENCES

[1] G. A. Baker, Jr., J. D. Johnson, J. D., Physica A 265, 129 (1999).

[2] See for example, E. M. Montroll, J. C. Ward, Phys. Fluids 1, 55 (1958); W. D. Kraeft,
W. Stolzmann, Physica A 97, 306 (1979); A. Alastuey and A. Perez, Europhys. Lett.
20, 19 (1992); J. Riemann, M. Schlanges, H. E. DeWitt, W. D. Kraeft, Physica A 219,

423 (1995).
[3] A. A. Bedenov, Soviet Physics, JEPT 9, 446 (1959).

[4] C. Domb and M. S. Green, eds., Phase Transitions and Critical Phenomena, Vol. 3,
(Academic Press, London, 1974).

[5] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5, Statistical
Physics as transl. E. Peierls and R. F. Peierls (Addison-Wesley, Reading, MA, 1958).

[6] M. Gell-Mann and K. Brueckner, Phys. Rev. 106, 369 (1957).

[7] G. A. Baker, Jr. and P. R. Graves-Morris Encyclopedia of Mathematics and its Applica-
tions, Vol. 59, Padé Approximants, second edition, G.-C. Rota, ed. (Cambridge Univ.
Press, New York, 1996).

[8] G. A. Baker, Jr., Phys. Rev. E 56, 5216 (1997).
[9] R. Redmer, Zeit. fiir Phys. Chem. 204, 135 (1998).

[10] N. H. Saha, Phil. Mag. 40, 472 (1920); D. Mihalas, Stellar Atmospheres (W. H. Freeman,

San Francisco, 1970).



FIG.

FIG.

FIG.

FIG.

FIG.

FIG.

FIG.

FIG.

FIG.

. The diagrams for the first-order interaction in e*.

. The second-order, “forbidden diagram’

FIGURES

2

. The second-order, direct-interaction diagram.

. The third-order ring diagram.

. The second-order, exchange-interaction diagram.

" and its exchange variants.

. The ideal, Fermi-gas curve versus the de Broglie density.
. The ratio of G3/Gy. The large dot marks the projected critical value of (.
. The ratio of the Debye-Hiickel term to the ideal Fermi gas term, G3/G.

. The ratio of G4/Gy. The large dot marks the projected critical value of (.

FIG. 10. Contours of G3y3/Gy. The dashed line is is the 0.1% contour, the short-dashed

line is for 1% and the dotted line is for 10%. The large dots are estimates of the critical

point. The series projection of the critical point lies outside the range of validity of the

series.
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Figure 1
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Figure 4
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