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The results of massively parallel three-dimensional molecular dynamics simulations of
the perpendicular intersection of extended dislocations in copper are reported. The
intersection process, which involves three of the four possible {111} glide planes in the
face-centered cubic lattice, begins with junction formation, followed by unzipping, partial
dislocation bowing, cutting, and, finally, unit jog formation. The investigation provides
insights into this complex atomistic process, which is currently not accessible to ex-
perimental investigation.

The resistance of a face-centered cubic
(fcc) crystal to dislocation glide is less
than 1025 m (1, 2), where m is the shear
modulus. Forest intersection—that is, the
intersection of mobile dislocations with
dislocations on other glide planes—is
therefore the principal mechanism limit-
ing the glide of dislocations at low strain
rates (1026 to ;100 s21). Recent research
(3) indicates that forest intersection also
predominates in the regime of much high-
er strain rates, up to at least 105 s21. In fcc
metals, such as copper, intersection pro-
cesses are complex because dislocations
are dissociated into two partial disloca-
tions separated by a stacking fault; this
combined structure is commonly referred
to as an extended dislocation. There are a
large number of potentially important in-
tersection mechanisms. The intersection
of attractive extended dislocations can
lead to the formation of barriers that im-
pede the motion of other dislocations. The
most important examples are Lomer-Cot-
trell barriers (4) and Hirth dislocation
locks (5). In contrast to attractive inter-
sections, there has been no research on
repulsive intersection processes.

There is no existing experimental tech-
nique that provides information on the
intersection process itself; the intersection
mechanism must be inferred. With trans-
mission electron microscopy, for example,
one observes only the jogs or kinks left
behind after the intersection process is
complete (6). Theoretical approaches are
confronted by complexities on two length
scales: the mutual bending and twisting of
approaching dislocations over distances up
to about 1 mm as a result of their linear
elastic interactions, and the interactions

between dislocation cores on an atomic
scale. Static continuum elastic dislocation
theory cannot be applied to the discrete
dislocation core-core overlap region, and
moreover, the static theory is inapplicable
when the applied stresses are sufficiently
high to drive the intersecting dislocations
at an appreciable fraction of the sound
velocity, where retardation (relativistic)
effects are potentially important. Molecu-
lar dynamics (MD) naturally encompasses
both the dislocation core-scale physics
and retardation effects and is currently
the only viable approach for investigating
the intersection process. In principle, all
types of dislocation intersection processes
not involving slow processes such as dif-
fusion can be investigated with MD. With
the advent of massively parallel comput-
ers, calculations involving millions of
atoms are now feasible (7, 8), allowing
the simulation of the interactions between
dislocation cores during the intersection
process.

We have developed a MD code,
SPaSM (Scaleable, Parallel, Short-Range
Molecular Dynamics) (7), designed for ef-
ficiently computing and analyzing the
huge amount of data generated in large-
scale computer simulations in three di-

mensions. Here we report the results of a
MD simulation of repulsive dislocation in-
tersection in copper, a typical fcc metal
with a low stacking-fault energy, revealing
the intermediate stages that lead to jog
formation.

The embedded-atom method (EAM)
potential, a many-body form in which a
pairwise interaction is augmented with a
term that depends on the local atomic den-
sity (9, 10), provides a good description of
fcc transition metals with completely empty
or filled d bands, such as copper. Here we
choose the copper EAM potential devel-
oped by Voter (10, 11), for which the lat-
tice constant a0 5 3.614 Å and the stack-
ing-fault energy is 0.0361 J/m2. Throughout
this paper we measure Burgers vectors (dis-
location-displacement vectors, equal to the
line integral of the elastic displacement
around the dislocation) in units of a0. We
use Thompson’s well-known notation for
glide planes and Burgers vectors in the fcc
lattice (1).

We chose to investigate the intersec-
tion of perpendicular dislocations in order
to minimize the sizes of junctions formed
during the intersection process. Perpen-
dicular intersection can occur only be-
tween dislocations parallel to the edges of
the Thompson tetrahedron (Fig. 1A), that
is, the regular tetrahedron with faces par-
allel to the close-packed {111} primary
glide planes. All such edge pairs are equiv-
alent, and therefore, the dislocations were
placed, without loss of generality, on the
d 5 (111) and a 5 (111) glide planes with
sense vectors (unit tangent vectors to the
dislocation line) [110]/=2 and [110]/=2,
respectively (Fig. 1A). The dislocation on
the d plane was chosen to be a screw dislo-
cation in order for it to remain stationary in
a compressive stress field. Its Burgers vector
was chosen to be BA 5 1

2
[110]. The Burgers

vector of the other dislocation was chosen
to be DB 5 1

2
[011] (12), so it was a 60°
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A BFig. 1. (A) Schematic of the MD
computational cell. The red dashed
lines indicate the boundary of the
computational cell; the dotted lines
represent the perpendicular ex-
tended dislocations BA and DB.
The stationary extended screw dis-
location BA 5 1

2
[110] with sense

vector j0 5 ŷ passes through the
center of the computational cell on
the d plane. The 60° dislocation DB
5 1

2
[011] has sense vector j60 5 x̂

and lies on the a plane. Note the
Thompson tetrahedron ABCD in
green. (B) Structure of the extended
dislocations. The 60° dislocation
DB with sense vector [110]/=2 consists of the two Shockley partials Da
and aB on the (111) glide plane. The screw dislocation BA has sense vector
[110]/=2 and is dissociated into Bd and dA on (111).
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mixed dislocation (a 60° angle between its
Burgers vector and its sense vector). The
interaction between DB and BA is repul-
sive according to the Peach-Koehler formu-
la (1).

The computational cell was a parallel-
epiped containing 200,000 to 3.5 million
atoms at an initial temperature of 0.01 K.
Free boundary conditions were employed
on all faces of the computational cell. We
note that the unavoidable asymmetric
emplacement of at least one of the two
perpendicular dislocations precludes the
imposition of periodic boundary condi-
tions. Interactions between the disloca-
tions and the free boundaries, resulting in
image forces, have some effect on the
intersection dynamics. However, the ef-
fects of image forces were minimized in
our simulations by arranging for intersec-
tion to occur near the center of the com-
putational cell, where the image forces
nearly cancel.

Placement of the two perfect disloca-
tions in the computational cell was
achieved by displacing the atoms from
their fcc lattice sites in accordance with
isotropic linear elasticity theory (1). After
placement of the dislocations, the system
was allowed to relax for 5 3 10213 s.
During this time, the dislocations BA and
DB dissociate into extended dislocations
consisting of two Shockley partials sepa-
rated by an intrinsic stacking fault (Figs.
1B and 2A). The initial screw BA disso-
ciates into dA and Bd, each 30° partials;
DB dissociates into aB, an edge partial,
and Da, another 30° partial. At 5 3 10213

s, a homogeneous compressive elastic
strain in the z direction only is imposed on
the system at a constant elastic strain rate

until a predetermined value of the elastic
strain εzz is attained at time t. Subsequent-
ly, εzz was maintained throughout the
computational cell by permanently fixing
the positions of the atoms in a few layers
on the top and bottom of the cell at their
locations at time t, but allowing all other
atoms to move according to the equations
of motion. Points where the partials exit
the computational cell serve as weak pin-
ning (more precisely dragging) points.

For the discussion that follows, it will
prove convenient to define the outside
(inside) of a glide plane as that half-space
occupied by an observer on the outside
(inside) of the Thompson tetrahedron.
Under the applied compressive stress, aB
glides toward the stationary screw BA.
Partial aB does not pass dA, the leading
screw partial, but instead forms a junction.
Reaction of the partials to form a stair-rod
junction with Burgers vector ad/AB 5
1
6
[013] is energetically favored. After junc-

tion formation, aB remains nearly station-
ary on the inside of the d plane but con-
tinues to glide on the outside until it
encounters the screw partial Bd. A stair-
rod junction is formed along the intersec-
tion of the d and a planes by means of the
reaction aB 1 Bd 3 ad, which is also
favored energetically (Fig. 2B). Like aB,
Bd barely moves on the inside of the a
plane, but aB and Bd continue to glide on
the outsides of the d and a planes, respec-
tively, thereby lengthening the ad junc-
tion. The growth of this junction halts at
a length of about 7a0 and then unzips as
the stacking fault in BA contracts on the
outside of the a plane. The edge partial aB
bows asymmetrically around the now
highly contracted screw (Fig. 2C). The

outside segment bows until it is roughly
perpendicular to its original direction,
whereas the inside segment bows to only
about 20°. When the two segments meet
at a critical breaking angle fc 5 70°, aB
passes the screw and is left with a jog of
length BA with sense vector BA/BA.
As aB continues to glide, an extended
unit jog forms between the contracted
screw and the jog in aB (Fig. 2D). The
MD simulations show that the stair rods
bounding the extended jog lie along the
intersection of the a and c planes, that is,
in the [011] direction; hence, the extend-
ed jog lies in the c plane. Partial Da is
perturbed only locally (Fig. 2, D and E)
when it interacts with the stair rods and
the screw; no appreciable bowing occurs.
When Da passes the screw dislocation, it
acquires a unit jog with the same length
and direction as the jog in aB, thus com-
pleting the formation of an extended unit
jog (jog line) in the mixed dislocation
with a width of approximately 20a0. The
screw dislocation is left with a highly con-
tracted unit jog (Fig. 2F). At the comple-
tion of the intersection process (1.2 3
10211 s), the angle between the segments
of aB meeting at the jog line is 100°. This
angle gradually increases to 110° at 1.4 3
10211 s (Fig. 2F). In contrast, the seg-
ments of Da on both sides of the jog line
are relatively straight and parallel. The
velocity of Da was measured before and
after intersection and was found to be
unchanged. At the largest applied com-
pressive elastic strain used in the simula-
tions, namely, 0.04, the velocity of the
partial Da is about 0.4vt, where vt is the
transverse sound speed in copper, so rela-
tivistic effects can be neglected.
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Fig. 2. The dislocation inter-
section process in copper at
times (A) 1.6 3 10212 s, (B)
5.0 3 10212 s, (C) 7.2 3
10212 s, (D) 8.1 3 10212 s,
(E) 1.1 3 10211 s, and (F )
1.4 3 10211 s. The compu-
tational cell has dimensions
Lx 5 Ly 5 85a0 and Lz 5
120a0. To visualize the dis-
locations, only atoms with
potential energies between
23.49 eV and 23.39 eV are
shown.
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With the weak-beam technique of elec-
tron microscopy, Carter (13) observed in
copper doped with 15.8% aluminum (stack-
ing fault energy, 0.004 J/m2) contracted and
extended jogs and concluded that the ex-
tension of a jog depends on several factors,
including the height of the jog and the
character of the dislocation. However, a
detailed characterization of the final con-
figuration was beyond his experimental res-
olution. Here the jog line on the mixed
dislocation is not fully contracted, whereas
that on the screw dislocation is, or is nearly
so; thus, the overall results are consistent
with Carter’s.

The extended jog is obtuse (Fig. 3), and
therefore, the Shockley partials bounding
the jog must be viewed from within the
Thompson tetrahedron. The climb or
glide of an isolated stair rod leads to the
formation of a high-energy stacking fault.
Consequently, the jog line is expected to
move parallel to the stair rods, that is,
in the [011] direction. This prediction is
approximately true in our simulations during
(Fig. 2D) and immediately after intersec-
tion (Fig. 2E), but a deviation from [011]
to [112] is observed as the unit jog con-
tinues to move away (Fig. 2F). Pfeffer et al.
(14) pointed out that jog lines lying along
^112& directions are energetically possible.
Deviations of jog lines from the ^011& to
the ^112& directions have been observed
(13), although the fine structure of the
deviated jog lines cannot be resolved ex-
perimentally. The motion of the jog line is
nonconservative, so existing dislocation
theory (1) would suggest that vacancies or
interstitials are formed behind the moving
jog line. However, no vacancies or inter-
stitials were observed in our simulations
after a search of the entire range of atomic
potential energies. The reason for this is
likely to be the fact that the stair rods are
only separated by one lattice spacing, so
that their glide plane is not well defined,
and therefore, the jog line can move freely
like a perfect screw dislocation.

The critical breaking angle fc deter-
mines the evolution of dislocation micro-
structures, but no accurate values of this

fundamental parameter are available. The
best estimate to date is that of Devincre
and Kubin (15) for copper. They used the
results of accurate measurements on sin-
gle-crystal copper to determine that fc lies
between 65° and 78°, in good agreement
with the present simulations.

The MD simulations show that DB can
pass AB once the mounting stress on AB
that results from the asymmetric bowing of
aB reaches a critical value; the trailing
partial Da easily passes through the ex-
tended dislocation. The critical stress tc at
which aB cuts through AB can be esti-
mated from the measured breaking angle.
We use the fixed-line-tension formula
(16)

tc 5
mb

2pL S1 2 n⁄2
1 2 n DlnSL

bDcosSfc

2 D (1)

to obtain an order-of-magnitude estimate of
tc. Here, b is the magnitude of the Burgers
vector, n is the Poisson ratio, and L is the
distance between two pinning obstacles.
We approximate L with Lx and set n 5
0.324. This formula assumes symmetric
bowing of the dislocation segments around
the obstacle (the contracted screw disloca-
tion in the present case) and ignores the
change in the character (edge or screw) of
the dislocation along the bowed segments.
Furthermore, this expression does not ac-
count for inertial or retardation effects. In a
system with Lx 5 42a0, we find tc 5
0.0073m 5 398 MPa, which corresponds to
an applied compressive elastic strain of
0.005.

An alternative estimate of tc can be
obtained by determining the applied
compressive elastic strain for which the
intersection time—that is, the time from
first contact of the edge partial with the
screw dislocation until jog formation is
complete—is infinite. In a system with Lx
5 Ly 5 42a0 and Lz 5 120a0, the inter-
section time approaches infinity at a com-
pressive strain of about 0.005, in agree-
ment with our rough estimate based on
Eq. 1. The intersection time decreases rap-
idly with increasing applied stress because
of both an increase in the mean glide
velocity of DB and a decrease in the width
of BA.

The dislocation intersection process is
unchanged by variations in the loading
stress from 395 MPa to 3.17 GPa, or by
changes in the system size from 200,000 to
3.5 million atoms. The MD simulations
presented here allow the construction of
simple analytic models that accurately
represent the intersection process, essen-
tial input for the development of consti-
tutive models (17) and for numerical sim-
ulations of a three-dimensional discrete
system of dislocations (15, 18).
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Fig. 3. Schematic of the obtuse extended unit jog
in the mixed dislocation. The shaded stacking
fault lies on a 5 (111), and the jog (hatched) is on
c 5 (111). Stair-rod dislocations 6DB/ga lie along
the intersection of (111) and (111).
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